## Übungsaufgaben zur Vorlesung

## "Einführung in die Theorie der Kondensierten Materie" Prof. Dr. Nils Blümer



## KOMET 337, Institut für Physik, Johannes Gutenberg-Universität

Aufgabenblatt 07, Abgabe: 11. 01. 2011

## Aufgabe 11. Freie Elektronen in d Dimensionen und die Sommerfeld-Entwicklung (20 Punkte)

Betrachten Sie freie Elektronen mit Dispersion

$$\varepsilon(\mathbf{k}) = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2}{2m} \left( \sum_{i=1}^d k_i^2 \right)$$

in d Dimensionen.

- (a) Bestimmen Sie den Zusammenhang von Fermi-Wellenzahl  $k_F$  und der Fermi-Energie  $\varepsilon_F$  mit der Teilchen-Dichte n=N/V (N Gesamt-Elektronenzahl, V "Volumen" des d-dimensionalen Systems) bei T=0.
- (b) Bestimmen Sie die Zustandsdichte  $\nu(\varepsilon)$  zunächst allgemein und zeigen Sie dann für die Zustandsdichte an der Fermikante  $\nu(\varepsilon_F) = \frac{d}{4} \frac{N}{\epsilon_F}$  (hier N = N(T=0)).

Die Sommerfeld-Entwicklung läßt Integrale der Form

$$\int_{-\infty}^{+\infty} d\varepsilon g(\varepsilon) f_F(\varepsilon),$$

wo  $f_F(\varepsilon) = [\exp(\beta(\varepsilon - \mu)) + 1]^{-1}$ , und  $g(\varepsilon)$  eine mehrfach stetig differenzierbare und integrierbare Funktion (mit  $g(\varepsilon \to -\infty) \to 0$ ) ist, als eine Temperatur-Reihe umformulieren:

$$\int_{-\infty}^{+\infty} d\varepsilon \, g(\varepsilon) f_F(\varepsilon) = \int_{-\infty}^{\mu} d\varepsilon \, g(\varepsilon) + \sum_{n=1}^{\infty} a_n (k_B T)^{2n} \left. \frac{d^{2n-1} g(\varepsilon)}{d\varepsilon^{2n-1}} \right|_{\varepsilon=\mu}.$$

Hier ist 
$$a_n = \int_{-\infty}^{+\infty} dx \frac{x^{2n}}{(2n)!} \frac{1}{(e^x + 1)(e^{-x} + 1)}$$
. Speziell gilt  $a_1 = \pi^2/6$ ,  $a_2 = 7\pi^4/360$ .

- (c) Bestimmen Sie mit Hilfe der Sommerfeld-Entwicklung die Temperatur-Abhängigkeit des chemischen Potentials  $\mu(T) = \varepsilon_F + b_2(k_BT)^2 + b_4(k_BT)^4$  bei konstanter Teilchenzahl.
- (d) Bestimmen Sie die innere Energie U(T) und die spezifische Wärme bei konstantem Volumen und konstanter Teilchenzahl  $c_{V,N}(T)$  in quartischer bzw. kubischer Ordnung in T für d=3 und d=2.
- (e) **Zusatzaufgabe:** Berechnen Sie  $c_{V,N}(T)$  numerisch für d=2, 3 und vergleichen Sie mit den Ergebnissen aus (d).