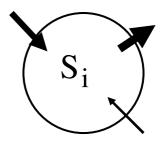
Recap: Canonical Monte Carlo (Importance Sampling)

Peter Virnau, 18.12.2007

Master equation (in equilibrium)


$$\sum_{j} P_i(t) W_{ij} = \sum_{j} P_j(t) W_{ji}$$

"Flow out of state i = Flow into state i"

This equation is fulfilled by any means, if

$$P_i(t)W_{ij}$$
 = $P_j(t)W_{ji}$ Detailed balance
$$\frac{W_{ij}}{W_{ji}}$$
 = $e^{-\beta(E_j-E_i)}$

Choose W_{ij} such that detailed balance is fulfilled. Metropolis: min(1,exp(- $\beta \Delta E$)) or Glauber ...

<u>Caution</u>: W_{ij} should consider the way we select particles for our Monte Carlo move $\rightarrow W_{ij} = a_{ij} w_{ij}$, where a_{ij} is the contribution from how we chose particles.

Example 1: Local displacement Chose a particle at random, displace it $W_{ij} = a_{ij} w_{ij} = 1/N w_{ij}$; $W_{ji} = a_{ji} w_{ji} = 1/N w_{ji} \rightarrow W_{ij} / W_{ji} = w_{ij} / w_{ji}$ $\rightarrow a_{ij}$ need not be considered!

Example 2: Slithering snake move Chose a particle at random, chose one side, attach particle from other side $W_{ij} = a_{ij} w_{ij} = 1/N \frac{1}{2} w_{ij}$; $W_{ji} = a_{ji} w_{ji} = 1/N \frac{1}{2} w_{ji} \rightarrow W_{ij} / W_{ji} = w_{ij} / w_{ji}$ $\rightarrow a_{ij}$ need not be considered

In the canonical ensemble we usually do not need to consider a_{ij} . In other ensembles, however, this is no longer true!

Grandcanonical simulations (µVT ensembe)

Example: Insertion and deletion of a Lennard-Jones particle

$$P_{i}(N) = \frac{e^{-\beta E_{i}(N) + \beta \mu N}}{Z_{gk}} \qquad P_{j}(N+1) = \frac{e^{-\beta E_{j}(N+1) + \beta \mu (N+1)}}{Z_{gk}}$$

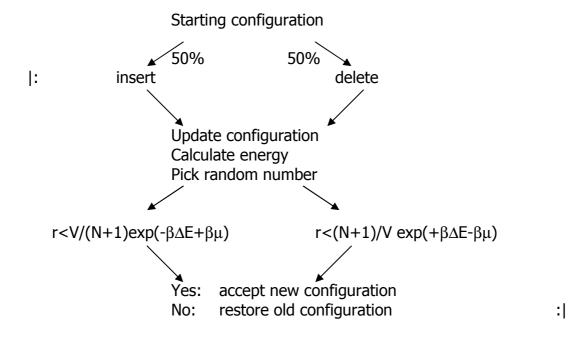
Detailed balance:

$$\frac{1}{2}\frac{c}{V}P_{i}(N)w_{ij}(N \to N+1) = \frac{1}{2}\frac{1}{N+1}P_{j}(N+1)w_{ji}(N+1 \to N)$$

c/V: probability for choosing a particular position

Idea: subdivide volume small subboxes. Chance of choosing any of the subboces = volume of subbox (c) / total volume $\rightarrow 1/V$ dependence. Constant c can be absorbed into chemical potential, which is only defined up to a

potential, which is only defined up to a constant.


1/(N+1): probability of selecting one out of (N+1) particles

 $\frac{w_{ij}(N \rightarrow N+1)}{w_{ii}(N+1 \rightarrow N)} = \frac{V}{c(N+1)} e^{-\beta(E_j(N+1)-E_i(N))+\beta\mu}$

Metropolis:

Verification: V/(N+1) exp(- $\beta\Delta E+\beta\mu$) > 1 $\frac{w_{ij}(N \rightarrow N+1)}{w_{ji}(N+1 \rightarrow N)} = \frac{V}{(N+1)}e^{-\beta(\Delta E)+\beta\mu}$ V/(N+1) exp(- $\beta\Delta E+\beta\mu$) < 1 homework

"Numerical Recipe"

