
Basic Monte Carlo (part 2)                      Peter Virnau, 20.11.2009 
 
Convergence 
 
Here, we will indicate that a system which is subject to the Metropolis 
algorithm will eventually move towards equilibrium. 
 
Metropolis criterion: Wij = min (1, Pj/Pi), where Pj and Pi are the equilibrium 
distributions of state j and i. In our case Pj and Pi are given by the Boltzmann 
distribution.  
 
Let’s consider 0 < Pj/Pi < 1. 
The net flux Fluxij from state i to j is given by: 
 
Fluxij = Pi(t) Wij – Pj(t) Wji =Pi(t) Pj/Pi – Pj (t) = Pi(t) (Pj/Pi – Pj(t)/Pi(t)). 
 
If Pj(t)/Pi(t) < Pj/Pi � Fluxij > 0 � Pj(t) and Pj(t)/Pi(t) increases  

� system moves towards equilibrium.  
 
If Pj(t)/Pi(t) > Pj/Pi � Fluxij <0 � Pi(t) increases and Pj(t)/Pi(t) decreases 
� system moves towards equilibrium. 
 
 
Selection probabilities: 
 
In most cases in the canonical ensemble we do not need to consider selection 
probabilities as moves are symmetrical. If we, e.g., choose an Ising-Spin at 
random for a single spin flip the probability for selecting a particular spin is 
ai=1/N (N being the total number of spins). The selection probability for the 
reverse move (flip the same spin back) is also aj=ai=1/N so the two cancel 
out and need not be considered. Sometimes, however, selection probabilities 
differ and detailed balance (and acceptance rule) are adjusted: 
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Markov chains 
 
In mathematics, a Markov chain, named after Andrey Markov, is a random 
process where all information about the future is contained in the present 
state (i.e. one does not need to examine the past to determine the future). 
To be more exact, the process has the Markov property, meaning that future 
states depend only on the present state, and are independent of past states. 
In other words, the description of the present state fully captures all the 
information that could influence the future evolution of the process. Being a 
stochastic process means that all state transitions are probabilistic 



(determined by random chance and thus unpredictable in detail, though likely 
predictable in its statistical properties). (From wikipedia). 
 
Monte Carlo simulations fulfill these criteria and form a Markov chain. 
 
 
Monte Carlo moves for a simple bead-spring polymer chain 
 
In the following we will discuss several Monte Carlo moves which are well-
suited for the simulation of coarse grained polymer models. 
 
Phase behavior of single polymer chains 
 
 
 
 
 
                          
At high temperatures, the free energy (F=E-TS) is dominated by entropic 
contributions, i.e., the chain wants to explore as many configurations as 
possible. At low temperatures, the free energy is dominated by energetic 
contributions, i.e., the monomers in the chain want to be located in the 
minimum of the pair-potential. Therefore, the chain “collapses” to a globular 

state. The transition from the coil to the globular state is referred to as the Θ-

transition. 
 
 
Local Monte Carlo moves 
 
Starting configuration 
|:  Move a particle 
  
 
 Determine the energy difference between old and new 
 configuration 
 Energy lower?   �  Accept the move 

 Energy higher?  �  Accept with probability exp(-β∆E) 
      
 [ Draw random number 0<r<1 :      
           r < exp(-β∆E)  � accept  

      else   � reject move  
 

Ex.:  exp(-β∆E) = 0.1, i.e. we would like to accept the move 
with 10% probability. We draw an evenly distributed number r 
between 0 and 1. The chance that r < 0.1 is 10%. 
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Reptation / slithering snake moves 
 

Recipe: Choose one end at 
random. Cut off one bead and 
attach it at the other end. Accept 

with Metropolis. In the simplest implementation the bond length is not 
changed. 
 
Adv.: Simple, faster than local displacements up to high densities, also works 
in melts. 
 
Pivot algorithm 
 
 
 
 
 
 
 
 
 
Recipe: Choose a monomer at random which acts as a rotation center. Rotate 
one arm of the chain by an arbitrary angle. Accept with Metropolis. 
 
Adv.:      Most efficient scheme for dilute systems. 
Disadv.:  Doesn’t work at high densities or in globular systems 
 
 
 
   


