Problem set 2: Metropolis Criterion, Ising Model

1. a. You have generated 100000 configurations of a Lennard-

Jones system using (1) simple sampling, (2) importance sampling.
How do you calculate the average energy?

Simple sampling:
$\frac{\sum_{i} E_{i} \cdot \exp \left(-\beta E_{i}\right)}{\sum_{i} \exp \left(-\beta E_{i}\right)}$
Importance sampling

$$
\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}
$$

b. Verify that the Metropolis criterion enforces detailed-balance.
(Distinguish between $\Delta E<0$ und $\Delta E>0$.)
$\Delta E<0$ (see handout last lecture)
$\Delta E>0: W_{i j}=\exp (-\beta \Delta E), W_{\mathrm{ji}}=1 \rightarrow \mathrm{~W}_{\mathrm{ij}} / \mathrm{W}_{\mathrm{ji}}=\exp (-\beta \Delta E)$ q.e.d.
c. The Glauber algorithm has the following acceptance rule:
$W_{i j}=\left(1-\tanh \left(\beta\left(E_{j}-E_{i}\right) / 2\right)\right)$.
Show that this algorithm enforces detailed balance, too.
(Hint: $\tanh (x)=\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right)$.)
$x=\beta \Delta E / 2$
$1-\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right) /\left(1-\left(e^{-x}-e^{x}\right) /\left(e^{-x}+e^{x}\right)\right)=e^{-2 x}=\exp (-\beta \Delta E)$ q.e.d.
d. Formulate the Metropolis Criterion for a local displacement in a system of hard discs in the canonical ensemble.

No overlap: Wij=1,
Overlap: \quad Wij $=\exp (-i n f i n i t y)=0$.
2. Consider a d-dimensional system of spins, which can point up ($s_{i}=+1$) or down ($s_{i}=-1$). Only nearest neighbors interact ("Ising-Model"). We would like to write a Monte Carlo program with which we can determine the statistical properties of such a system.
a. How many interactions need to be calculated after a single spin flip in $\mathrm{d}=1,2,3$ dimensions?
$d=1: 2$ nearest neighbor interactions
$d=2: 4$ nearest neighbor interactions
$d=3: 6$ nearest neighbor interactions

b. Write down which steps need to be implemented to simulate the Ising model.

Generate starting configuration
|: Flip a single spin
Calculate interactions with nearest neighbors
Energy lower? $\quad \rightarrow \quad$ Accept the move
Energy higher? $\quad \rightarrow \quad$ Accept with probability $\exp (-\beta \Delta E)$
[Draw random number 0<<<1:
$r<\exp (-1 / k T D E) \rightarrow$ accept spin flip
else $\quad \rightarrow$ reject spin flip] :|
c. Which configurations would you expect at high and at low temperatures. Distinguish between $d=1$ and $d=2,3$.
$d=1$: No phase separation at $T>0$
$d=2, d=3$:

Temperature | Init cold | Init hot | Init warm | |
| :---: | :---: | :---: | :---: |
| 1.0 | Start | Stop | Step |

Temperature		Init cold	Init hot	Init warm
6.0	Start	Stop	Step	

d. If you have access to a computer:

Verify part c for $d=2$:
(http://bartok.ucsc.edu/peter/java/ising/keep/ising.html)
What happens at $T=2.629$?

Picture credits: oscar.cacr.caltech.edu/Hrothgar/Ising/Ising1.JPG

