Quantum Monte Carlo simulations of strongly correlated electron systems within dynamical mean-field theory

Nils Blümer, Univ. Mainz

Outline

Motivation: cooperative phenomena in solids

Approaches for correlated electrons; DFT vs. DMFT

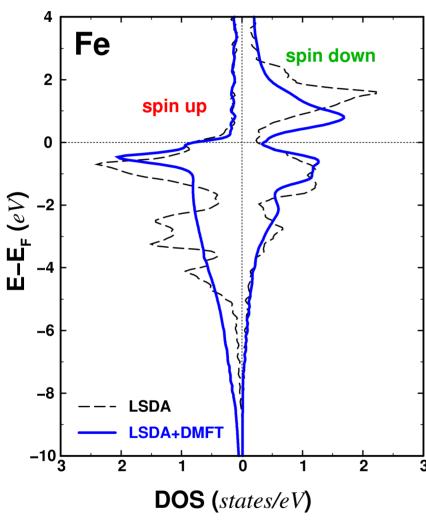
HF-QMC and other DMFT impurity solvers

Orbital-selective Mott transitions

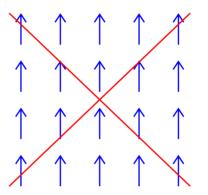
Summary and outlook

Motivation: cooperative phenomena in solids

Itinerant ferromagnetism and half-metallicity

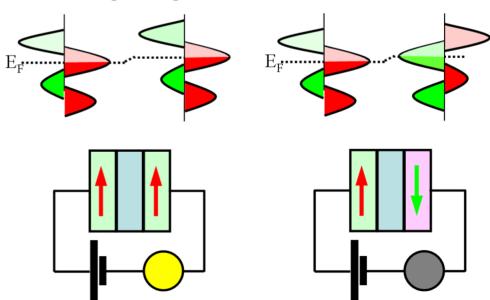


[Chioncel et. al, PRB (2003)]



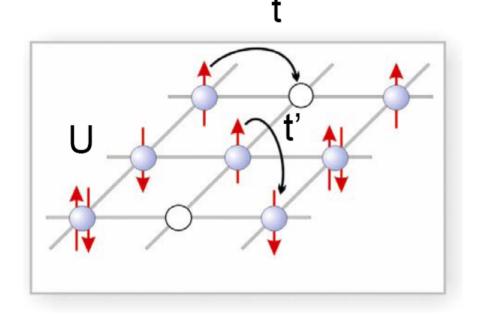
Spin models insufficient

Technological goal: TMR with half metals

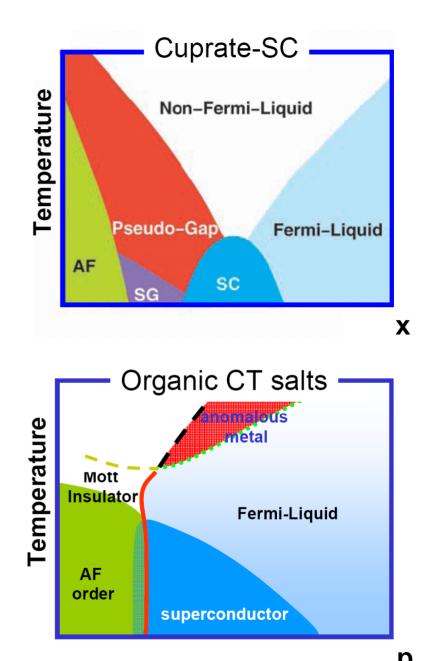


Complex phases of cuprate and organic superconductors

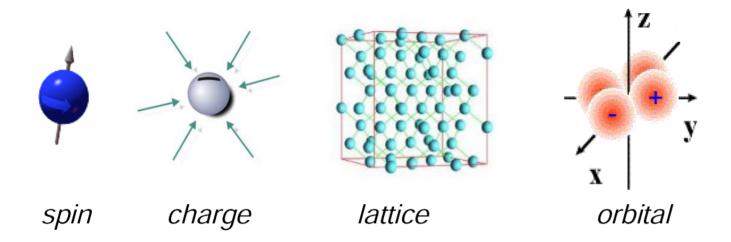
High- T_c physics contained in 2D Hubbard model?



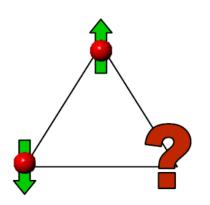
Are antiferromagnetic (AF) and Mott insulating phases essential for superconductivity?

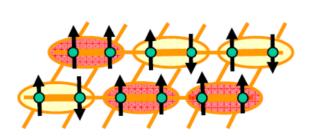


Interplay of multiple degrees of freedom



Frustrated systems, spin liquids, BEC of magnons



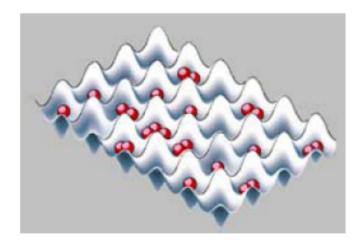


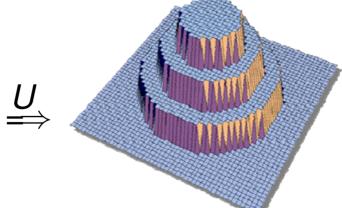
New model systems: ultracold atoms on optical lattices

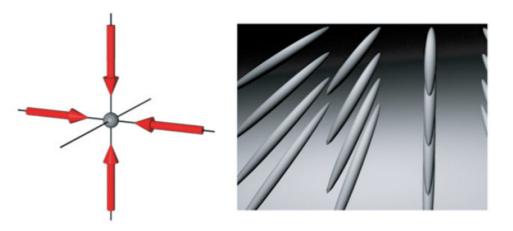
tunable:

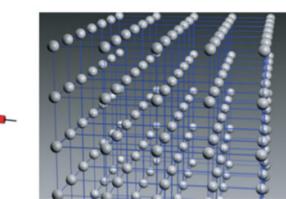
- dimensionality
- statistics
- hopping amplitudes
- interactions

Mott transition (for bosons)

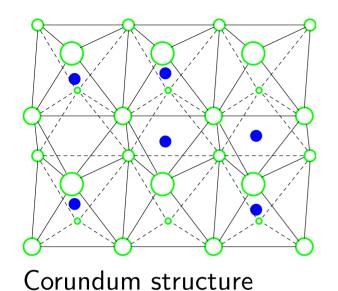






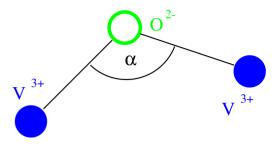


Bandwidth control of metal-insulator transitions



Hydrostatic pressure or isovalent doping change

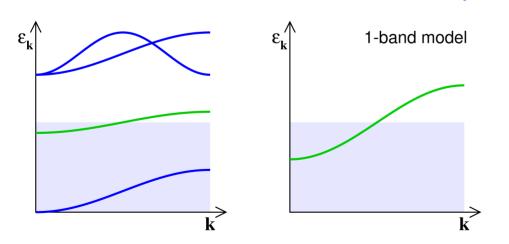
- lattice spacings
- bond angles
- → hopping amplitudes

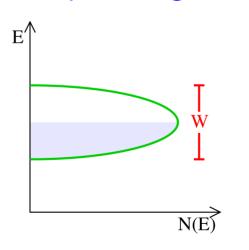


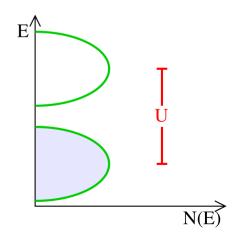
 $\alpha_{Cr} < \alpha_{V} < \alpha_{Ti}$

Bond angles for V_2O_3 doped with Cr or Ti

Breakdown of Bloch band description at paramagnetic Mott transition







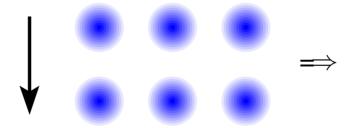
Bloch states near Fermi energy,

band-splitting by Coulomb correlations

Microscopic modeling I

General Hamiltonian for nuclei and electrons

$$H = \sum_{i=1}^{N_e} \frac{|\mathbf{p}_i|^2}{2m} + \sum_{k=1}^{L} \frac{|\mathbf{P}_k|^2}{2M_k} + \sum_{k$$



$$H = \sum_{i=1}^{N_e} \frac{p_i^2}{2m} + \sum_{i} V(r_i) + \sum_{i < i} \frac{e^2}{|r_i - r_j|}$$

Classes of theoretical approaches for electronic problem

- continuum methods (density functional theory, variational+diffusion QMC, . . .)
- methods for lattice electrons

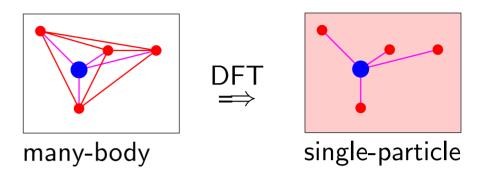
Density functional theory in LDA

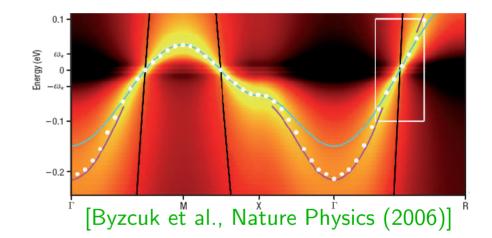
Density functional theory (DFT)

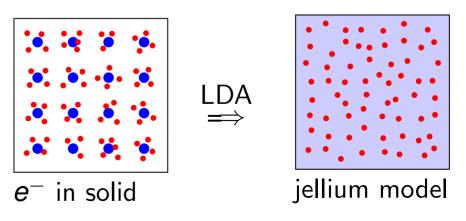
- exact ground state approach
- based on electron density $n(\mathbf{r})$
- Kohn-Sham equations solve effective single-particle problem
- result: ground state energy + n(r)
- heuristics: band structure
- problem: exchange-correlation potential unknown

Local density approximation (LDA)

- exchange-correlation potential from jellium model (parametrized QMC)
- not reliable for correlated systems
- often good results
- basis for LDA+U and LDA+DMFT







Microscopic modeling II

$$H = \sum_{i=1}^{N_e} \frac{p_i^2}{2m} + \sum_i V(r_i) + \sum_{i < j} \frac{e^2}{|r_i - r_j|}$$

reduction to valence electrons

$$H = \sum_{i=1}^{N_{v}} \frac{\boldsymbol{p}_{i}^{2}}{2m} + \sum_{i=1}^{N_{v}} V^{\text{ion}}(\boldsymbol{r}_{i}) + \sum_{i=1}^{N_{v}-1} \sum_{j=i+1}^{N_{v}} V^{ee}(\boldsymbol{r}_{i}, \boldsymbol{r}_{j})$$

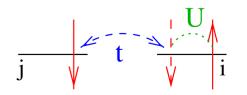
occupation number formalism Wannier orbitals

$$\hat{H} = \sum_{i\nu j\sigma} t^{\nu}_{ij} \, \hat{c}^{\dagger}_{i\nu\sigma} \, \hat{c}_{j\nu\sigma} \, + \, \frac{1}{2} \sum_{\nu\nu'\mu\mu'} \sum_{ijmn} \sum_{\sigma\sigma'} \mathcal{V}^{\nu\nu'\mu\mu'}_{ijmn} \, \hat{c}^{\dagger}_{i\nu\sigma} \, \hat{c}^{\dagger}_{j\nu'\sigma'} \, \hat{c}_{n\mu'\sigma'} \, \hat{c}_{m\mu\sigma}$$

Hubbard model

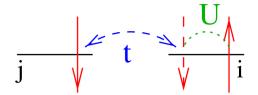
$$\hat{H} = \sum_{(i,j),\sigma} t_{ij} (\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \text{h.c.}) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

$$j$$



Approaches for Hubbard-type models

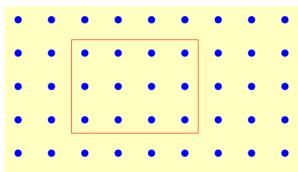
$$\hat{H} = \sum_{(i,j),\sigma} t_{ij} (\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \text{h.c.}) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$



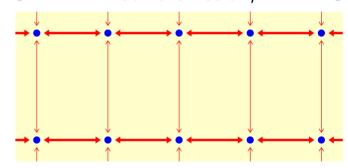
Perturbation theory

- $U \rightarrow 0$: Hartree-Fock 2nd order PT, . . .
- $t/U \rightarrow 0$ (for n = 1) \rightsquigarrow Heisenberg model

finite clusters: ED, QMC



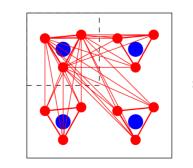
 $d \rightarrow 1$: Bethe ansatz, DMRG

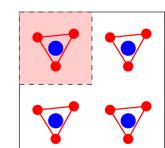


Dynamical mean-field theory (DMFT): local self-energy $\Sigma(\mathbf{k}, \omega) \equiv \Sigma(\omega)$

[Metzner, Vollhardt, PRL (1989), Georges, Kotliar, PRL (1992), Jarrell, PRL (1992)]

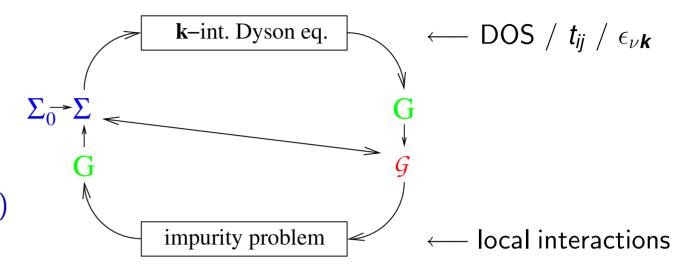
- + non-perturbative → valid at MIT
- + dynamical on-site correlations preserved
- + in thermodynamic limit
- +/- exact for coordination $Z o\infty$





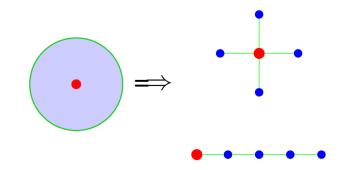
Iterative solution of DMFT equations

- 0. Initialize self-energy
- 1. Solve Dyson equation
- 2. Solve single impurity Anderson model (SIAM)



Impurity solver:

- Iterative perturbation theory (IPT; not controlled)
- Quantum Monte-Carlo (QMC)
- Exact diagonalization (ED; large finite-size errors)
- Numerical renormalization group (NRG; 1-2 bands)
- Density matrix renormalization group (DMRG)
- Self-energy functional theory (SFT) + ED



Auxiliary-field QMC algorithm [Hirsch, Fye (1986)]

Green-Funktion G in imaginary time (fermionic Grassmann variables ψ , ψ^*):

$$G_{\sigma}(\tau_{2} - \tau_{1}) \equiv G_{\sigma}(\tau_{1}, \tau_{2}) = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\psi^{*}] \psi_{\sigma}(\tau_{1}) \psi_{\sigma}^{*}(\tau_{2}) e^{\mathcal{A}},$$

$$\mathcal{A} = \mathcal{A}_{0} - \frac{U}{2} \sum_{\sigma \sigma'} \int_{0}^{\beta} d\tau \psi_{\sigma}^{*}(\tau) \psi_{\sigma}(\tau) \psi_{\sigma'}^{*}(\tau) \psi_{\sigma'}(\tau)$$

Discretization $\beta = \Lambda \Delta \tau$, Trotter decoupling, Hubbard-Stratonovich transformation

Metropolis MC importance sampling over auxiliary Ising field, (2^{Λ} configurations)

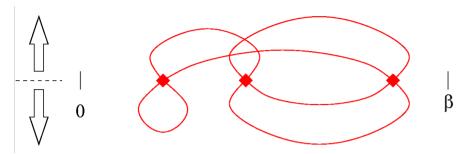
+ numerically exact, — effort scales as T^{-3} , — no info for $\omega \gtrsim \omega_{\text{Nyquist}}$

Recent generalizations: projective QMC (PQMC) [Feldbacher, Held, Assaad (2004)] treating Hund rule spin-flip terms without sign problem

New development: continuous-time QMC algorithms

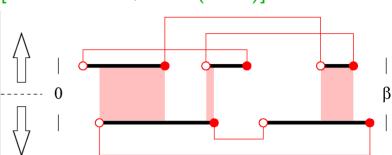
1. weak-coupling expansion

[Rubtsov, Savkin, Lichtenstein, PRB (2005)]



2. hybridization expansion

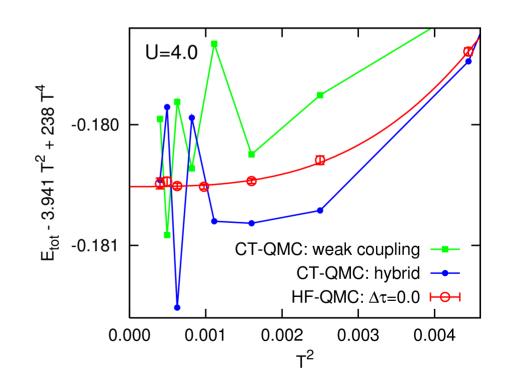
[Werner et al., PRL (2006)]



CT-QMC methods: smaller matrices

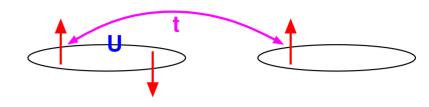
Claim [Troyer (2006)]: CT-QMC methods are orders of magnitude more efficient than HF-QMC [Gull et al., cond-mat/0609438]

high-precision HF-QMC DMFT But: solver [Knecht, Blümer, van Dongen (2005)] is competitive, at least after extrapolation $\Delta \tau \rightarrow \mathbf{0}$ [Blümer, in preparation]

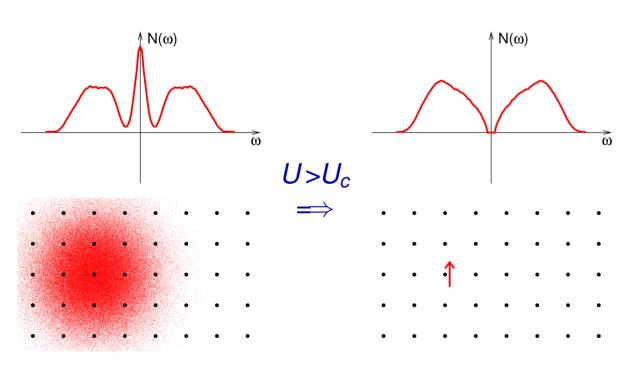


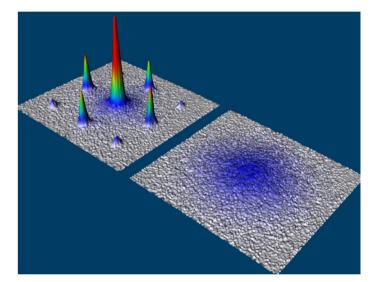
Orbital-selective Mott transitions

Well-known: Mott transition in frustrated 1-band Hubbard model



localization by interactions

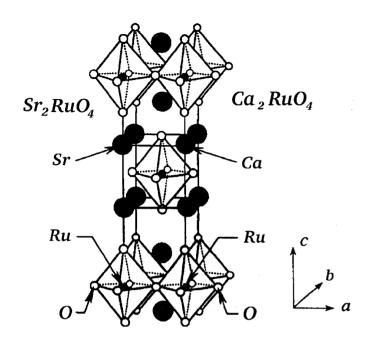




Localization (= decoherence) of ultracold bosons on optical lattice (Bloch group, 2002)

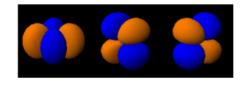
Case of multiple inequivalent orbitals/flavors?

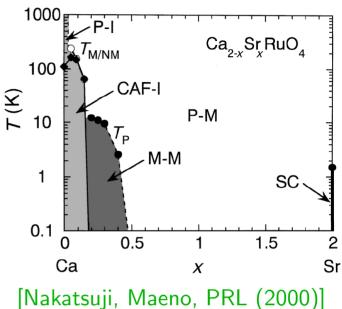
OSMTs in Ca_{2-x}Sr_xRuO₄



isostructural to $La_{2-x}Sr_xCuO_4$

4 valence electrons in 3 Ru t_{2g} orbitals





susceptibility, MR \rightsquigarrow S = 1/2 system (+ easy axis) for $0.2 < x \le 0.5$ (not S = 1)

orbital-selective Mott metal-insulator transitions for $x \approx 0.5$, $x \approx 0.2$?

2-band model with orbital-dependent hopping

$$H = \sum_{m=1}^{2} \left[-\sum_{\langle ij\rangle\sigma} t_{m} c_{im\sigma}^{\dagger} c_{jm\sigma} + U \sum_{i} n_{im\uparrow} n_{im\downarrow} \right]$$

$$+ \sum_{i\sigma\sigma'} (U' - \delta_{\sigma\sigma'} J_{z}) n_{i1\sigma} n_{i2\sigma'}$$

$$m=1$$

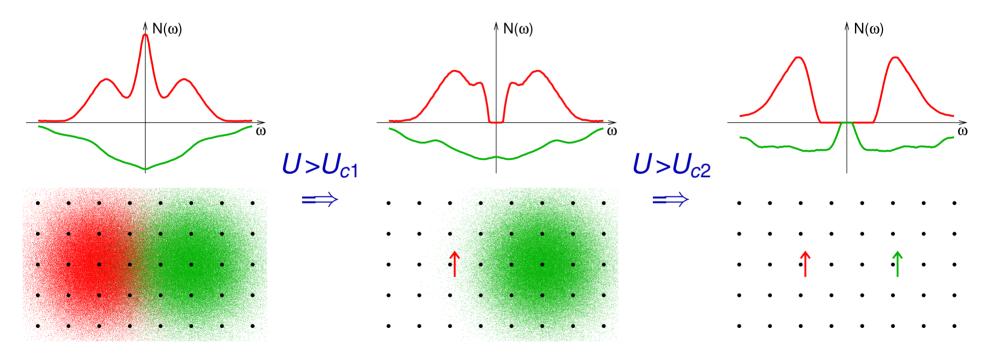
$$U' - J$$

$$U' - J$$

$$U' - J$$

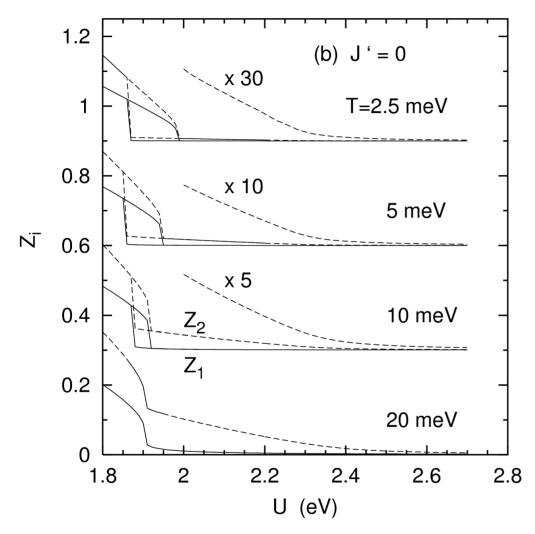
$$m=2$$

Ising-type Hund couplings with $t_2/t_1 = 2$ and U' = U/2, $J_z = U/4$ [Liebsch, PRB (2004)]

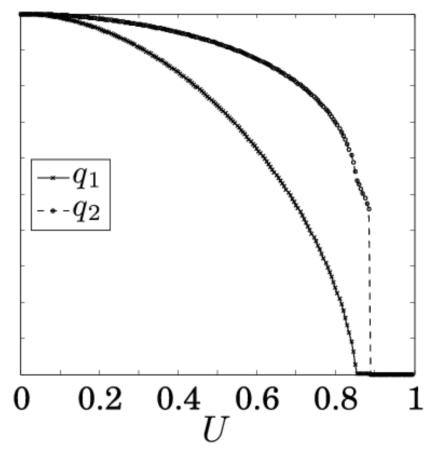


2 phase transitions [Knecht et al. (PRB 2005), de' Medici et al. (PRB 2005), Rüegg et al. (EPJB 2005)] Character of wide-band transition?

Order of wide-band transition in anisotropic model



ED \rightsquigarrow no hysteresis at low T for wide-band transition [Liebsch, PRL (2005)]



Slave-boson MF \rightsquigarrow 1st order wideband transition (at T = 0) [Rüegg, Indergand, Pilgram, Sigrist, EPJB (2005)]

Systematic study: effect of inter-orbital coupling

$$H = \sum_{m=1}^{2} \left[-\sum_{\langle ij \rangle \sigma} t_m c_{im\sigma}^{\dagger} c_{jm\sigma} + U \sum_{i} n_{im\uparrow} n_{im\downarrow} \right] + \alpha \sum_{i} (U/2 - \delta_{\sigma\sigma'} U/4) n_{i1\sigma} n_{i2\sigma'}$$

$$1 \qquad T = 1/40, \ \Delta \tau = 0.4 \qquad 0.1$$

$$0.6 \qquad \text{wide band}$$

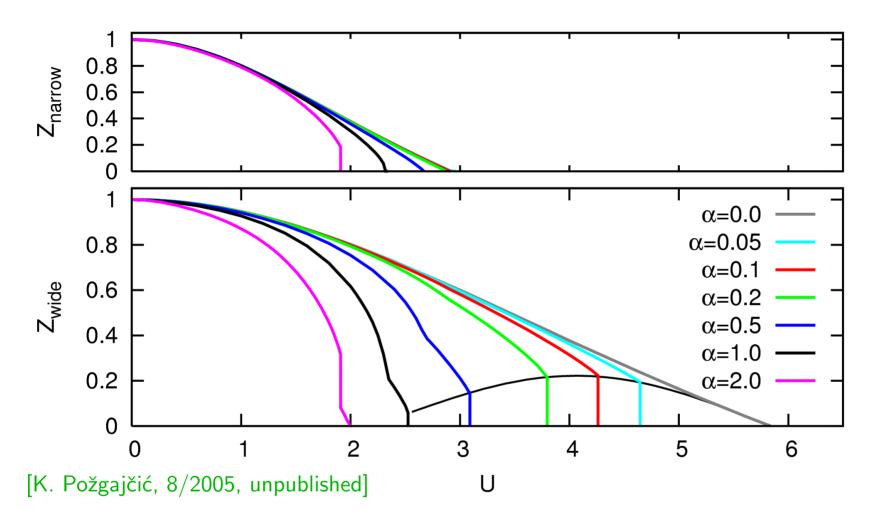
$$0.4 \qquad \alpha = 0.0 \qquad \alpha = 0.1 \qquad \alpha = 0.2 \qquad \alpha = 0.5 \qquad \alpha = 1.0 \qquad \text{ode } 1$$

$$0.2 \qquad \alpha = 1.0 \qquad 0$$

$$0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad \text{for small } \alpha$$

$$0 \qquad 1^{\text{st}} \text{ order at } T = 0?$$

Self-energy functional theory (SFT+ED) with 1 bath site per orbital

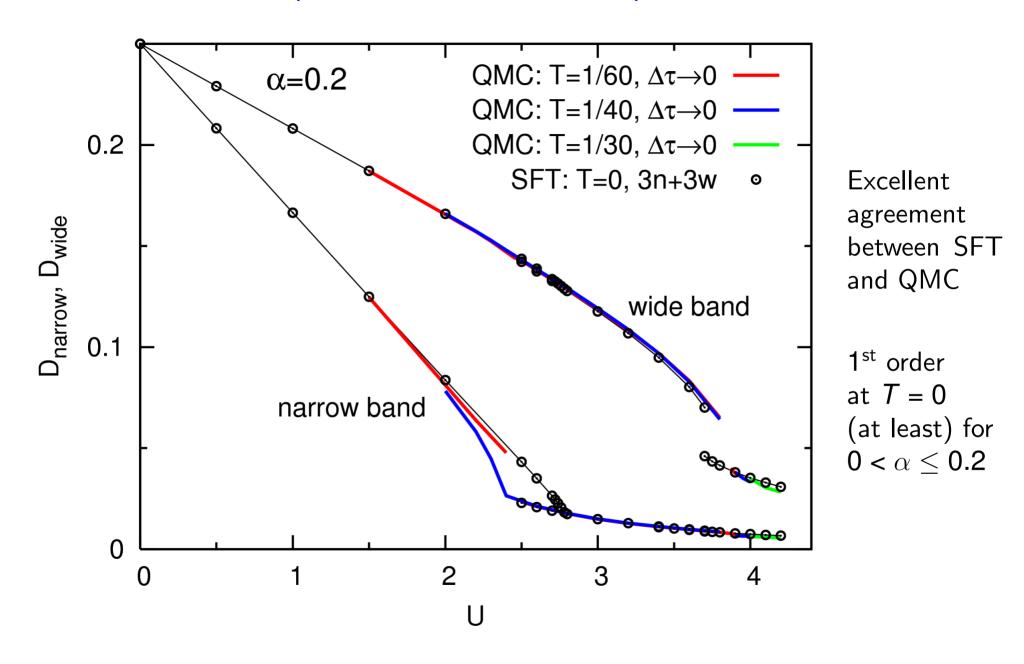


- ∘ 1st order wide-band transition for $0 < \alpha \le 1.5$ ∘ larger α : 2nd order \leftrightarrow 1st order

Problems: \circ Low-frequency part of $\Sigma(\omega)$ inconsistent with QMC

- \circ Z ill-defined in OSM phase \circ strong finite-size effects

Double occupancy (1st order derivative of Ω)



Summary

Cooperative phenomena in correlated electron systems

Theoretical approaches: (multi-band) Hubbard models, DMFT

Numerical solution: Hirsch-Fye QMC, SFT+ED

Application: orbital-selective Mott transitions

Not covered: High-frequency corrections in HF-QMC DMFT solver

Critical exponents from QMC and strong-coupling PT

Theory of half-metallic double perovskites

Realistic material-specific calculations with LDA+DMFT

Outlook

Band structure calculations for correlated systems

Cluster extensions of DMFT

Ultracold quantum gases on optical lattices . . .

Starting in 7/2007: SFB/TRR 49 (Frankfurt - Kaiserslautern - Mainz) Condensed matter systems with variable many-body interactions

A1 [Bloch] – Ultracold Fermi mixtures in optical lattices

A2 [Kuhr/Bloch] - Spatially addressable quantum gases in optical lattices

A3 [Hofstetter] – Inhomogeneous quantum phases in ultracold gases with strong correlations

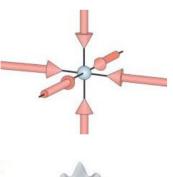
A5 [Fleischhauer/Eggert] – Advanced numerical methods for correlated quantum gases

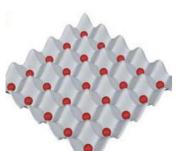
A6 [Blümer] – Flavour-selective Mott transitions of ultracold quantum gases on optical lattices

A7 [Hillebrands/Serha] – Collective effects and instabilities of a magnon gas

A8 [Kopietz] - Interacting magnons and critical behaviour of bosons

project area B: real materials



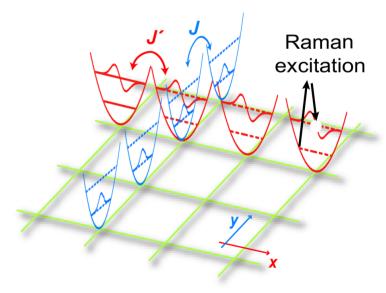


A1 + A6: flavor selectivity in Fermi mixtures of different

- atomic species: ⁶Li and ⁴⁰K
- hyperfine states
- vibrational levels

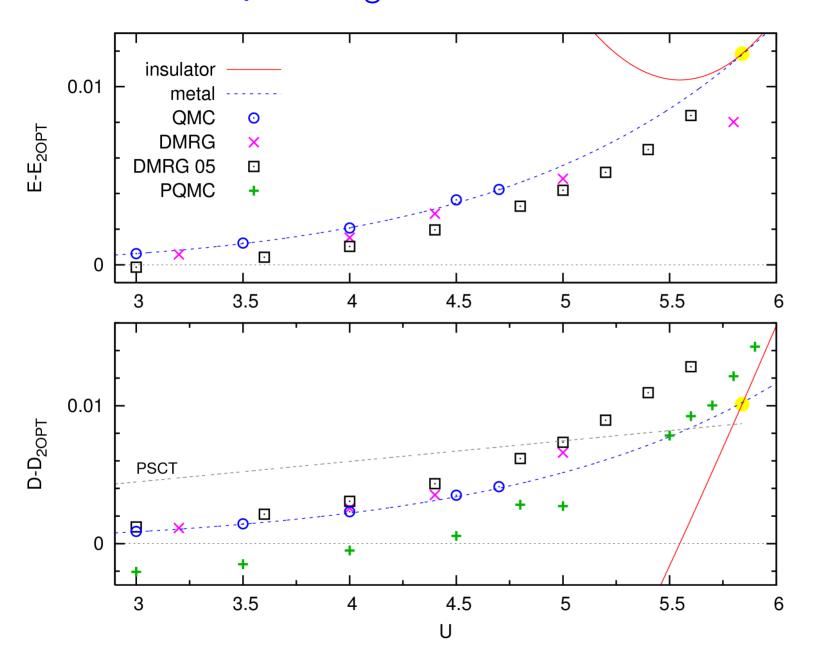
on optical lattices

Hopping amplitudes tunable and flavor-dependent!

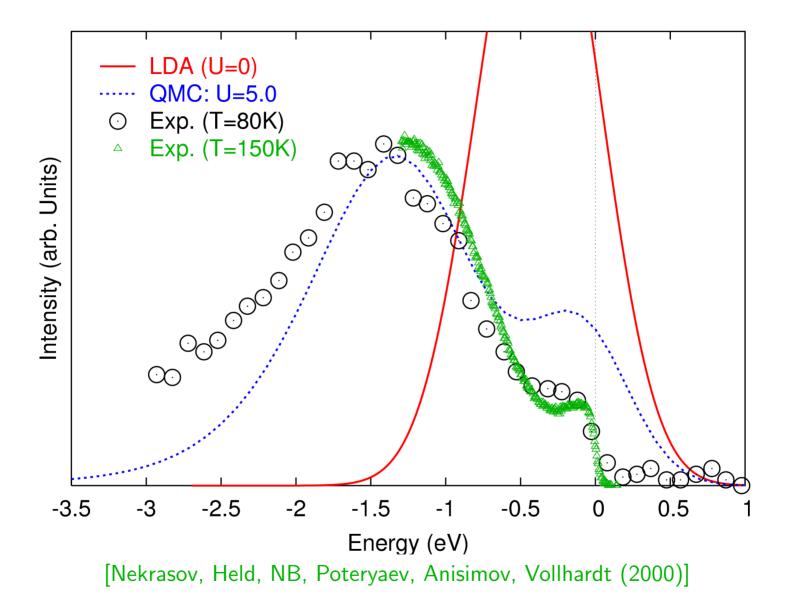


[Müller, Fölling, Widera, Bloch (2007)]

Precision: HF-QMC vs. ground state methods



System near Mott transition: $La_{1-x}Sr_xTiO_3$ – photoemission spectra



LDA+DMFT(QMC): Reasonable accuracy, drastic improvement over LDA

24

Critical exponents from QMC and ePT

Ground state energy E of 1-band Mott insulator from

1. HF-QMC with $T \rightarrow 0$ extrapolation

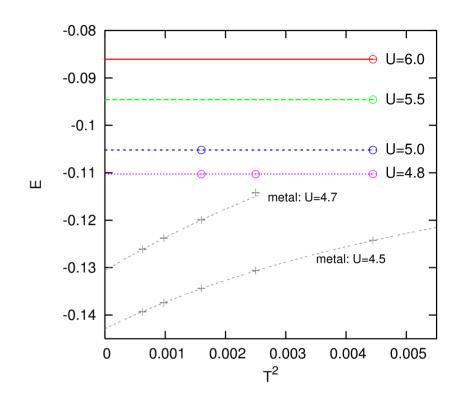
$$\Sigma(\omega) = \frac{U^2}{4\omega} + \mathcal{O}(\omega^{-2})$$

$$40 \times 10^7 \text{ sweeps}$$

$$\text{careful } \Delta \tau \text{ extrapolation}$$

$$\Delta E \approx 10^{-5}$$

minimal T-dependence for Mott insulator



2. T=0 Kato-Takahashi perturbation theory

$$E_{\rm PT}(U) = -\frac{1}{2U} - \frac{1}{2U^3} - \frac{19}{8U^5} - \frac{593}{32U^7} - \frac{23877}{128U^9} + \mathcal{O}(U^{-11})$$

coefficient ratios: 1

4.8

7.8

10.1

 10^{th} order PT accurate (only) at $U \gtrsim 6$: $\Delta E_{\mathrm{PT}} \leq 10^{-5}$

Extended perturbation theory: ePT

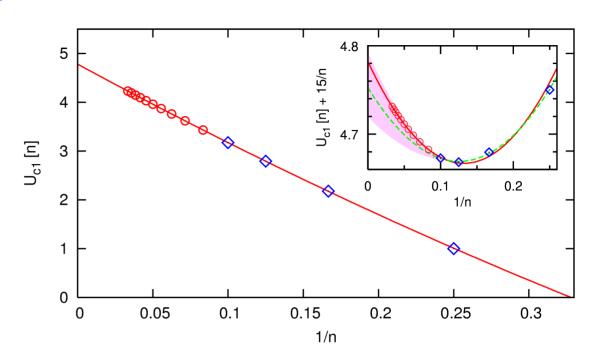
Extrapolate coefficients

in PT series
$$E_{PT} = \sum_{i=1}^{\infty} a_{2i} U^{1-2i}$$

by fitting ratios

$$U_{c1}[2i] \equiv \sqrt{a_{2i+2}/a_{2i}}$$
 to

$$U_{c1}[n] \approx U_{c1} + u_1 n^{-1} + u_2 n^{-2}$$



General consequences:

$$U_{c1} = \lim_{i \to \infty} U_{c1}[2i]$$

$$a_n \propto n^{\tau} U_{c1}^n$$
; $\tau = -\frac{u_1}{U_{c1}}$

$$E(U) \propto (U - U_{c1})^{\tau-1}$$

$$D(U) \propto (U - U_{c1})^{\tau-2}$$

Specifics / numerical results of extrapolation:

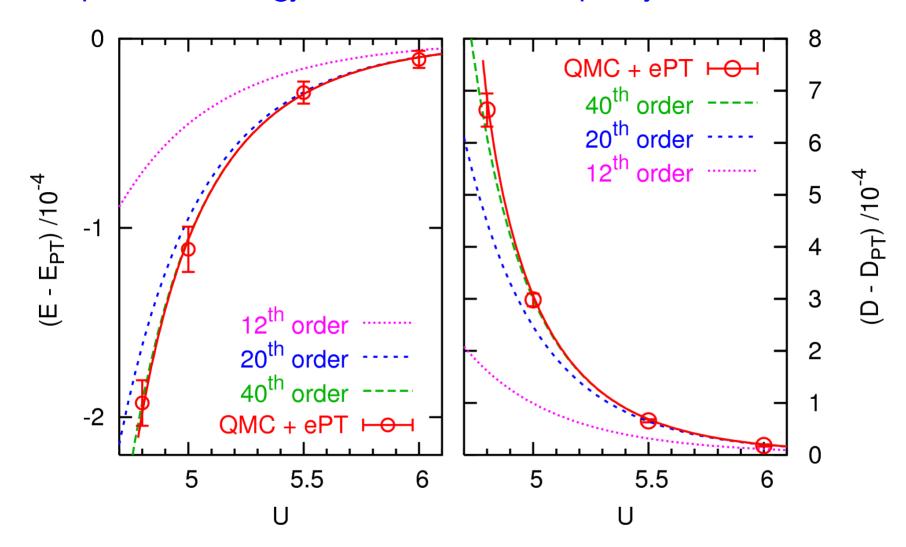
Unrestricted quadratic fit $\rightsquigarrow \tau \approx$ 3.44, $U_{c1} \approx$ 4.75

Comparisons with QMC \rightsquigarrow 3.36 $\leq \tau \leq$ 3.53

Half-integer exponents likely for mean-field theories

Assume $\tau = 3.5 \iff U_{c1} = 4.782, E_{ePT}(U), D_{ePT}(U)$

Comparisons: energy E and double occupancy D = dE/dU



Excellent agreement → reliable exponents, fully parametrized benchmark results [Blümer, Kalinowski, Phys. Rev. B **71**, 195102 (2005)]