Quantum Monte Carlo simulations of strongly correlated electron systems within dynamical mean-field theory

Nils Blümer, Univ. Mainz

Outline

Motivation: cooperative phenomena in solids Approaches for correlated electrons; DFT vs. DMFT HF-QMC and other DMFT impurity solvers Orbital-selective Mott transitions Summary and outlook

Motivation: cooperative phenomena in solids

Itinerant ferromagnetism and half-metallicity

Motivation: cooperative phenomena in solids

Itinerant ferromagnetism and half-metallicity

2

 \triangle

 \triangleright

Complex phases of cuprate and organic superconductors

High- T_c physics contained in 2D Hubbard model?

Are antiferromagnetic (AF) and Mott insulating phases essential for superconductivity?

Interplay of multiple degrees of freedom

Frustrated systems, spin liquids, BEC of magnons

New model systems: ultracold atoms on optical lattices

tunable:

- dimensionality
- statistics
- hopping amplitudes
- interactions

New model systems: ultracold atoms on optical lattices

tunable:

- dimensionality
- statistics
- hopping amplitudes
- interactions
- Mott transition (for bosons)

Corundum structure

Hydrostatic pressure or isovalent doping change

- lattice spacings
- bond angles
- \rightsquigarrow hopping amplitudes

 $\alpha_{Cr} < \alpha_V < \alpha_{Ti}$

Bond angles for V_2O_3 doped with Cr or Ti

Hydrostatic pressure or isovalent doping change

- lattice spacings
- bond angles
- \rightsquigarrow hopping amplitudes

 $\alpha_{Cr} < \alpha_V < \alpha_{Ti}$

Bond angles for V_2O_3 doped with Cr or Ti

6

Breakdown of Bloch band description at paramagnetic Mott transition

Bloch states near Fermi energy

Hydrostatic pressure or isovalent doping change

- lattice spacings
- bond angles
- \rightsquigarrow hopping amplitudes

 $\alpha_{Cr} < \alpha_V < \alpha_{Ti}$

Bond angles for V_2O_3 doped with Cr or Ti

Breakdown of Bloch band description at paramagnetic Mott transition

Bloch states near Fermi energy

Hydrostatic pressure or isovalent doping change

- lattice spacings
- bond angles
- \rightsquigarrow hopping amplitudes

 $\alpha_{Cr} < \alpha_V < \alpha_{Ti}$

Bond angles for V_2O_3 doped with Cr or Ti

Breakdown of Bloch band description at paramagnetic Mott transition

General Hamiltonian for nuclei and electrons

$$H = \sum_{i=1}^{N_e} \frac{p_i^2}{2m} + \sum_{k=1}^{L} \frac{P_k^2}{2M_k} + \sum_{k$$

General Hamiltonian for nuclei and electrons

$$H = \sum_{i=1}^{N_e} \frac{p_i^2}{2m} + \sum_{k=1}^{L} \frac{P_k^2}{2M_k} + \sum_{k$$

General Hamiltonian for nuclei and electrons

General Hamiltonian for nuclei and electrons

$$H = \sum_{i=1}^{N_e} \frac{p_i^2}{2m} + \sum_{k=1}^{L} \frac{P_k^2}{2M_k} + \sum_{k
Born-Oppenheimer
approximation (0thorder)
$$H = \sum_{i=1}^{N_e} \frac{p_i^2}{2m} + \sum_i V(\mathbf{r}_i) + \sum_{i$$$$

Classes of theoretical approaches for electronic problem

- continuum methods (density functional theory, variational+diffusion QMC, ...)
- methods for lattice electrons

Density functional theory (DFT)

- exact ground state approach
- based on electron density *n*(*r*)
- Kohn-Sham equations solve effective single-particle problem

Density functional theory (DFT)

- exact ground state approach
- based on electron density *n*(*r*)
- Kohn-Sham equations solve effective single-particle problem
- result: ground state energy + $n(\mathbf{r})$
- heuristics: band structure

Density functional theory (DFT)

- exact ground state approach
- based on electron density *n*(*r*)
- Kohn-Sham equations solve effective single-particle problem
- result: ground state energy + $n(\mathbf{r})$
- heuristics: band structure
- problem: exchange-correlation potential unknown

Density functional theory (DFT)

- exact ground state approach
- based on electron density n(r)
- Kohn-Sham equations solve effective single-particle problem
- result: ground state energy + $n(\mathbf{r})$
- heuristics: band structure
- problem: exchange-correlation potential unknown

Local density approximation (LDA)

- exchange-correlation potential from jellium model (parametrized QMC)
- not reliable for correlated systems
- often good results
- basis for LDA+U and LDA+DMFT

⊳ 8

 \leftarrow \triangle

$$H = \sum_{i=1}^{N_{e}} \frac{p_{i}^{2}}{2m} + \sum_{i} V(\mathbf{r}_{i}) + \sum_{i < j} \frac{e^{2}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$
reduction to valence electrons
$$\int & \textcircled{(o)} & \textcircled{(o)} & \textcircled{(o)} \\ & \textcircled{(o)} & \textcircled{(o)} & \textcircled{(o)} \\ & \textcircled{(o)} & (0) \\ & (0)$$

$$H = \sum_{i=1}^{N_{\theta}} \frac{p_{i}^{2}}{2m} + \sum_{i} V(\mathbf{r}_{i}) + \sum_{i < j} \frac{e^{2}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$
reduction to valence electrons
$$\begin{array}{c} \textcircled{\bullet} & \textcircled{\bullet} & \textcircled{\bullet} & \textcircled{\bullet} & \textcircled{\bullet} \\ \hline \textcircled{\bullet} & \textcircled{\bullet} & \textcircled{\bullet} & \textcircled{\bullet} \\ \hline \textcircled{\bullet} & \textcircled{\bullet} & \textcircled{\bullet} & \textcircled{\bullet} \\ \hline \textcircled{\bullet} & \textcircled{\bullet} & \textcircled{\bullet} & \textcircled{\bullet} \\ \hline \textcircled{\bullet} & \textcircled{\bullet} & \textcircled{\bullet} & \textcircled{\bullet} \\ \hline \blacksquare & \textcircled{\bullet} & \textcircled{\bullet} \\ \hline H = \sum_{i < l} \frac{p_{i}^{2}}{2m} + \sum_{i = 1}^{N_{v}} V^{\text{ion}}(\mathbf{r}_{i}) + \sum_{i = 1}^{N_{v}} \sum_{j = l + 1}^{N_{v}} V^{\Theta \Theta}(\mathbf{r}_{i}, \mathbf{r}_{j}) \\ \hline \Box & \Box & \Box \\ \hline H = \sum_{i < l} \frac{p_{i}^{2}}{2m} + \frac{1}{2} \sum_{\nu \nu' \mu \mu'} \sum_{i \\ i \\ mnn \\ \hline \Box & \sigma \\ \hline \Box & \sigma \\ \hline \end{bmatrix} \\ \hline \begin{array}{c} \Box & \Box \\ \Box & \Box \\ \hline \Box$$

EPS Computational Physics Group meeting, Mainz 🕔 June 8, 2007 🕔 Nils Blümer (Univ. Mainz, Germany) 🛛 🤜 🔶 ⊳

Approaches for Hubbard-type models

$$\hat{H} = \sum_{(i,j),\sigma} \mathbf{t}_{ij} (\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \text{h.c.}) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

Perturbation theory

- $U \rightarrow 0$: Hartree-Fock 2^{nd} order PT, . . .
- $t/U \rightarrow 0$ (for n = 1) \rightsquigarrow Heisenberg model

finite clusters: ED, QMC

Approaches for Hubbard-type models

$$\hat{H} = \sum_{(i,j),\sigma} \mathbf{t}_{ij} (\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \text{h.c.}) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

Perturbation theory

- $U \rightarrow 0$: Hartree-Fock 2^{nd} order PT, . . .
- *t*/*U* → 0 (for *n* = 1)
 → Heisenberg model

finite clusters: ED, QMC

Dynamical mean-field theory (DMFT): local self-energy $\Sigma(\mathbf{k}, \omega) \equiv \Sigma(\omega)$ [Metzner, Vollhardt, PRL (1989), Georges, Kotliar, PRL (1992), Jarrell, PRL (1992)]

- + non-perturbative \rightsquigarrow valid at MIT
- + dynamical on-site correlations preserved
- + in thermodynamic limit
- +/- exact for coordination $Z
 ightarrow \infty$

Iterative solution of DMFT equations

Iterative solution of DMFT equations

Impurity solver:

- Iterative perturbation theory (IPT; not controlled)
- Quantum Monte-Carlo (QMC)

Iterative solution of DMFT equations

Impurity solver:

- Iterative perturbation theory (IPT; not controlled)
- Quantum Monte-Carlo (QMC)
- Exact diagonalization (ED; large finite-size errors)
- Numerical renormalization group (NRG; 1-2 bands)
- Density matrix renormalization group (DMRG)
- Self-energy functional theory (SFT) + ED

Green-Funktion G in imaginary time (fermionic Grassmann variables ψ , ψ^*):

$$\begin{split} G_{\sigma}(\tau_{2}-\tau_{1}) &\equiv G_{\sigma}(\tau_{1},\tau_{2}) &= \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\psi^{*}] \ \psi_{\sigma}(\tau_{1}) \psi_{\sigma}^{*}(\tau_{2}) \ \boldsymbol{e}^{\mathcal{A}} ,\\ \mathcal{A} &= \mathcal{A}_{0} - \frac{U}{2} \sum_{\sigma\sigma'} \int_{0}^{\beta} \boldsymbol{d}\tau \ \psi_{\sigma}^{*}(\tau) \psi_{\sigma}(\tau) \psi_{\sigma'}^{*}(\tau) \psi_{\sigma'}(\tau) \end{split}$$

Discretization $\beta = \Lambda \Delta \tau$, Trotter decoupling

Green-Funktion G in imaginary time (fermionic Grassmann variables ψ , ψ^*):

$$\begin{split} G_{\sigma}(\tau_{2}-\tau_{1}) &\equiv G_{\sigma}(\tau_{1},\tau_{2}) &= \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \, \mathcal{D}[\psi^{*}] \, \psi_{\sigma}(\tau_{1}) \psi_{\sigma}^{*}(\tau_{2}) \, \boldsymbol{e}^{\mathcal{A}} \,, \\ \mathcal{A} &= \mathcal{A}_{0} - \frac{\mathcal{U}}{2} \sum_{\sigma\sigma'} \int_{0}^{\beta} \boldsymbol{d}\tau \, \psi_{\sigma}^{*}(\tau) \psi_{\sigma}(\tau) \psi_{\sigma'}^{*}(\tau) \psi_{\sigma'}(\tau) \,. \end{split}$$

Discretization $\beta = \Lambda \Delta \tau$, Trotter decoupling, Hubbard-Stratonovich transformation

$$\longrightarrow \bigwedge^{*}_{*} \bigoplus^{*}_{*} \bigoplus$$

Green-Funktion G in imaginary time (fermionic Grassmann variables ψ , ψ^*):

$$\begin{split} G_{\sigma}(\tau_{2}-\tau_{1}) &\equiv G_{\sigma}(\tau_{1},\tau_{2}) &= \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \, \mathcal{D}[\psi^{*}] \, \psi_{\sigma}(\tau_{1}) \psi^{*}_{\sigma}(\tau_{2}) \, \boldsymbol{e}^{\mathcal{A}} \,, \\ \mathcal{A} &= \mathcal{A}_{0} - \frac{\mathcal{U}}{2} \sum_{\sigma\sigma'} \int_{0}^{\beta} \boldsymbol{d}\tau \, \psi^{*}_{\sigma}(\tau) \psi_{\sigma}(\tau) \psi^{*}_{\sigma'}(\tau) \psi_{\sigma'}(\tau) \end{split}$$

Discretization $\beta = \Lambda \Delta \tau$, Trotter decoupling, Hubbard-Stratonovich transformation

$$\longrightarrow \bigwedge^{*}_{*} \bigoplus^{*}_{*} \bigoplus$$

Metropolis MC importance sampling over auxiliary Ising field, (2^{Λ} configurations) + numerically exact, - effort scales as T^{-3} , - no info for $\omega \gtrsim \omega_{Nyquist}$

Green-Funktion G in imaginary time (fermionic Grassmann variables ψ, ψ^*):

$$\begin{split} G_{\sigma}(\tau_{2}-\tau_{1}) &\equiv G_{\sigma}(\tau_{1},\tau_{2}) &= \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \, \mathcal{D}[\psi^{*}] \, \psi_{\sigma}(\tau_{1}) \psi_{\sigma}^{*}(\tau_{2}) \, \boldsymbol{e}^{\mathcal{A}} \,, \\ \mathcal{A} &= \mathcal{A}_{0} - \frac{\mathcal{U}}{2} \sum_{\sigma\sigma'} \int_{0}^{\beta} \boldsymbol{d}\tau \, \psi_{\sigma}^{*}(\tau) \psi_{\sigma}(\tau) \psi_{\sigma'}^{*}(\tau) \psi_{\sigma'}(\tau) \end{split}$$

Discretization $\beta = \Lambda \Delta \tau$, Trotter decoupling, Hubbard-Stratonovich transformation

$$\longrightarrow \bigwedge^{+} \bigoplus_{n \to \infty} + \cdots$$
 Wick theorem:
$$G = \frac{\sum M \det\{M\}}{\sum \det\{M\}}$$

Metropolis MC importance sampling over auxiliary Ising field, (2^{Λ} configurations) + numerically exact, - effort scales as T^{-3} , - no info for $\omega \gtrsim \omega_{Nyquist}$

Recent generalizations: projective QMC (PQMC) [Feldbacher, Held, Assaad (2004)] treating Hund rule spin-flip terms without sign problem

New development: continuous-time QMC algorithms

2. hybridization expansion [Werner et al., PRL (2006)]

CT-QMC methods: smaller matrices

New development: continuous-time QMC algorithms

2. hybridization expansion[Werner et al., PRL (2006)]

CT-QMC methods: smaller matrices

Claim [Troyer (2006)]: CT-QMC methods are orders of magnitude more efficient than HF-QMC [Gull et al., cond-mat/0609438]

New development: continuous-time QMC algorithms

CT-QMC methods: smaller matrices

Claim [Troyer (2006)]: CT-QMC methods are orders of magnitude more efficient than HF-QMC [Gull et al., cond-mat/0609438]

But: high-precision HF-QMC DMFT solver [Knecht, Blümer, van Dongen (2005)] is competitive, at least after extrapolation $\Delta \tau \rightarrow \mathbf{0}$ [Blümer, in preparation]

2. hybridization expansion [Werner et al., PRL (2006)]

Orbital-selective Mott transitions

Well-known: Mott transition in frustrated 1-band Hubbard model

localization by interactions

Orbital-selective Mott transitions

Well-known: Mott transition in frustrated 1-band Hubbard model

localization by interactions

Localization (= decoherence) of ultracold bosons on optical lattice (Bloch group, 2002)

Orbital-selective Mott transitions

Well-known: Mott transition in frustrated 1-band Hubbard model

localization by interactions

Localization (= decoherence) of ultracold bosons on optical lattice (Bloch group, 2002)

Case of multiple inequivalent orbitals/flavors?

OSMTs in Ca_{2-x}Sr_xRuO₄

isostructural to La_{2-x}Sr_xCuO₄

4 valence electrons in 3 Ru t_{2g} orbitals

OSMTs in Ca_{2-x}Sr_xRuO₄

susceptibility, MR \rightsquigarrow S = 1/2 system (+ easy axis) for $0.2 < x \leq 0.5$ (not S = 1)

orbital-selective Mott metal-insulator transitions for $x \approx 0.5$, $x \approx 0.2$?

2-band model with orbital-dependent hopping

$$H = \sum_{m=1}^{2} \left[-\sum_{\langle ij \rangle \sigma} t_m c_{im\sigma}^{\dagger} c_{jm\sigma} + U \sum_{i} n_{im\uparrow} n_{im\downarrow} \right] \qquad m=1 \underbrace{\downarrow}_{U'-J} \underbrace{\downarrow}_{U'$$

Ising-type Hund couplings with $t_2/t_1 = 2$ and U' = U/2, $J_z = U/4$ [Liebsch, PRB (2004)]

2-band model with orbital-dependent hopping

Ising-type Hund couplings with $t_2/t_1 = 2$ and U' = U/2, $J_z = U/4$ [Liebsch, PRB (2004)]

2 phase transitions [Knecht et al. (PRB 2005), de' Medici et al. (PRB 2005), Rüegg et al. (EPJB 2005)]

2-band model with orbital-dependent hopping

Ising-type Hund couplings with $t_2/t_1 = 2$ and U' = U/2, $J_z = U/4$ [Liebsch, PRB (2004)]

2 phase transitions [Knecht et al. (PRB 2005), de' Medici et al. (PRB 2005), Rüegg et al. (EPJB 2005)] Character of wide-band transition?

Order of wide-band transition in anisotropic model

Systematic study: effect of inter-orbital coupling

$$H = \sum_{m=1}^{2} \left[-\sum_{\langle ij \rangle \sigma} t_m c_{im\sigma}^{\dagger} c_{jm\sigma} + U \sum_i n_{im\uparrow} n_{im\downarrow} \right] + \alpha \sum_{i\sigma\sigma'} (U/2 - \delta_{\sigma\sigma'} U/4) n_{i1\sigma} n_{i2\sigma'}$$

Systematic study: effect of inter-orbital coupling

Self-energy functional theory (SFT+ED) with 1 bath site per orbital

◦ 1st order wide-band transition for 0 < $\alpha \le 1.5$ ◦ larger α : 2nd order ↔ 1st order

Self-energy functional theory (SFT+ED) with 1 bath site per orbital

◦ 1st order wide-band transition for $0 < \alpha \leq 1.5$ ◦ larger α : 2nd order ↔ 1st order

Problems: \circ Low-frequency part of $\Sigma(\omega)$ inconsistent with QMC $\circ Z$ ill-defined in OSM phase \circ strong finite-size effects

EPS Computational Physics Group meeting, Mainz · June 8, 2007 · Nils Blümer (Univ. Mainz, Germany)

Double occupancy (1st order derivative of Ω)

Summary

Cooperative phenomena in correlated electron systems Theoretical approaches: (multi-band) Hubbard models, DMFT Numerical solution: Hirsch-Fye QMC, SFT+ED Application: orbital-selective Mott transitions

Summary

Cooperative phenomena in correlated electron systems Theoretical approaches: (multi-band) Hubbard models, DMFT Numerical solution: Hirsch-Fye QMC, SFT+ED Application: orbital-selective Mott transitions

Not covered: High-frequency corrections in HF-QMC DMFT solver Critical exponents from QMC and strong-coupling PT Theory of half-metallic double perovskites Realistic material-specific calculations with LDA+DMFT

Summary

Cooperative phenomena in correlated electron systems Theoretical approaches: (multi-band) Hubbard models, DMFT Numerical solution: Hirsch-Fye QMC, SFT+ED Application: orbital-selective Mott transitions

Not covered: High-frequency corrections in HF-QMC DMFT solver Critical exponents from QMC and strong-coupling PT Theory of half-metallic double perovskites Realistic material-specific calculations with LDA+DMFT

Outlook

Band structure calculations for correlated systems

Cluster extensions of DMFT

Ultracold quantum gases on optical lattices . . .

Starting in 7/2007: SFB/TRR 49 (Frankfurt - Kaiserslautern - Mainz) Condensed matter systems with variable many-body interactions

- A1 [Bloch] Ultracold Fermi mixtures in optical lattices
- A2 [Kuhr/Bloch] Spatially addressable quantum gases in optical lattices
- A3 [Hofstetter] Inhomogeneous quantum phases in ultracold gases with strong correlations
- A5 [Fleischhauer/Eggert] Advanced numerical methods for correlated quantum gases
- A6 [Blümer] Flavour-selective Mott transitions of ultracold quantum gases on optical lattices
- A7 [Hillebrands/Serha] Collective effects and instabilities of a magnon gas
- A8 [Kopietz] Interacting magnons and critical behaviour of bosons

project area B: real materials

A1 + A6: flavor selectivity in Fermi mixtures of different

- atomic species: ^{6}Li and ^{40}K
- hyperfine states
- vibrational levels
- on optical lattices

Hopping amplitudes tunable and flavor-dependent!

[Müller, Fölling, Widera, Bloch (2007)]

Precision: HF-QMC vs. ground state methods

System near Mott transition: $La_{1-x}Sr_xTiO_3$ – photoemission spectra

LDA+DMFT(QMC): Reasonable accuracy, drastic improvement over LDA

EPS Computational Physics Group meeting, Mainz · June 8, 2007 · Nils Blümer (Univ. Mainz, Germany) 🛛 🗸 🔶 🛆 ▷ 24

Critical exponents from QMC and ePT

Ground state energy E of 1-band Mott insulator from

1. HF-QMC with $T \rightarrow 0$ extrapolation

 $\Sigma(\omega) = \frac{U^2}{4\omega} + \mathcal{O}(\omega^{-2})$ $40 \times 10^7 \text{ sweeps}$ careful $\Delta \tau$ extrapolation $\Delta E \approx 10^{-5}$

minimal T-dependence for Mott insulator

Critical exponents from QMC and ePT

Ground state energy E of 1-band Mott insulator from

1. HF-QMC with $T \rightarrow 0$ extrapolation

 $\Sigma(\omega) = \frac{U^2}{4\omega} + \mathcal{O}(\omega^{-2})$ $40 \times 10^7 \text{ sweeps}$ careful $\Delta \tau$ extrapolation $\Delta E \approx 10^{-5}$

minimal *T*-dependence for Mott insulator

2. T = 0 Kato-Takahashi perturbation theory

$$E_{\rm PT}(U) = -\frac{1}{2U} - \frac{1}{2U^3} - \frac{19}{8U^5} - \frac{593}{32U^7} - \frac{23877}{128U^9} + \mathcal{O}(U^{-11})$$

10thorder PT accurate (only) at $U\gtrsim$ 6: $\Delta E_{\rm PT}\leq$ 10⁻⁵

Critical exponents from QMC and ePT

Ground state energy E of 1-band Mott insulator from

1. HF-QMC with $T \rightarrow 0$ extrapolation

 $\Sigma(\omega) = \frac{U^2}{4\omega} + \mathcal{O}(\omega^{-2})$ $40 \times 10^7 \text{ sweeps}$ careful $\Delta \tau$ extrapolation $\Delta E \approx 10^{-5}$

minimal T-dependence for Mott insulator

$$E_{\rm PT}(U) = -\frac{1}{2U} - \frac{1}{2U^3} - \frac{19}{8U^5} - \frac{593}{32U^7} - \frac{23877}{128U^9} + \mathcal{O}(U^{-11})$$

coefficient ratios: 1 4.8 7.8 10.1

10thorder PT accurate (only) at $U\gtrsim 6$: $\Delta E_{\rm PT} \leq 10^{-5}$

Extended perturbation theory: ePT

Extrapolate coefficients in PT series $E_{PT} = \sum_{i=1}^{\infty} a_{2i} U^{1-2i}$ by fitting ratios $U_{c1}[2i] \equiv \sqrt{a_{2i+2}/a_{2i}}$ to

$$U_{c1}[n] \approx U_{c1} + u_1 n^{-1} + u_2 n^{-2}$$

General consequences:

$$egin{aligned} & U_{c1} = \lim_{i o \infty} U_{c1}[2i] \ & a_n \propto n^{ au} \, U_{c1}^n; \ \ au = -rac{u_1}{U_{c1}} \ & E(U) \propto (U - U_{c1})^{ au - 1} \ & D(U) \propto (U - U_{c1})^{ au - 2} \end{aligned}$$

Extended perturbation theory: ePT

General consequences: $U_{c1} = \lim_{i \to \infty} U_{c1}[2i]$ $a_n \propto n^{\tau} U_{c1}^n; \quad \tau = -\frac{u_1}{U_{c1}}$

 $E(U) \propto (U - U_{c1})^{ au - 1} \ D(U) \propto (U - U_{c1})^{ au - 2}$

Specifics / numerical results of extrapolation: Unrestricted quadratic fit $\rightsquigarrow \tau \approx 3.44$, $U_{c1} \approx 4.75$ Comparisons with QMC $\rightsquigarrow 3.36 \le \tau \le 3.53$ Half-integer exponents likely for mean-field theories Assume $\tau = 3.5 \rightsquigarrow U_{c1} = 4.782$, $E_{ePT}(U)$, $D_{ePT}(U)$

Comparisons: energy *E* and double occupancy D = dE/dU

Excellent agreement → reliable exponents, fully parametrized benchmark results [Blümer, Kalinowski, Phys. Rev. B **71**, 195102 (2005)]