Quantum Monte Carlo simulations within dynamical mean-field theory

Nils Blümer, Univ. Mainz

Outline

Motivation and Introduction Efficiency of QMC DMFT solvers Unbiased Green functions and spectra from HF-QMC Multigrid Hirsch-Fye quantum Monte Carlo algorithm Spectral weight transfer at the Mott transition Breakdown of a Fermi liquid Summary and outlook

Motivation: strong electronic correlations

Mott metal-insulator transition

Prototype example: V_2O_3 doped with Cr/Ti and/or under pressure

Motivation: strong electronic correlations

Mott metal-insulator transition

Prototype example: V_2O_3 doped with Cr/Ti and/or under pressure

Electrical conductivity

Ab initio calculations for correlated systems: LDA+DMFT

Recent "hot topic": kinks in photoemission spectra

Itinerant ferromagnetism and half-metallicity

Spin models insufficient

Theoriekolloquium, Mainz · 10.01.2008 · Nils Blümer (Univ. Mainz, Germany)

Itinerant ferromagnetism and half-metallicity

Complex phases of cuprate and organic superconductors

High- T_c physics contained in 2D Hubbard model?

Are antiferromagnetic (AF) and Mott insulating phases essential for superconductivity?

 \triangleleft

Microscopic modeling I

General Hamiltonian for nuclei and electrons

$$H = \sum_{i=1}^{N_e} \frac{p_i^2}{2m} + \sum_{k=1}^{L} \frac{P_k^2}{2M_k} + \sum_{k$$

Microscopic modeling I

General Hamiltonian for nuclei and electrons

$$H = \sum_{i=1}^{N_{e}} \frac{p_{i}^{2}}{2m} + \sum_{k=1}^{L} \frac{P_{k}^{2}}{2M_{k}} + \sum_{k
Born-Oppenheimer
approximation (0thorder)$$

Microscopic modeling I

General Hamiltonian for nuclei and electrons

$$H = \sum_{i=1}^{N_e} \frac{\mathbf{p}_i^2}{2m} + \sum_{k=1}^{L} \frac{\mathbf{P}_k^2}{2M_k} + \sum_{k
Born-Oppenheimer
approximation (0thorder)
$$\bigvee$$
$$H = \sum_{i=1}^{N_e} \frac{\mathbf{p}_i^2}{2m} + \sum_i V(\mathbf{r}_i) + \sum_{i$$$$

Microscopic modeling I

General Hamiltonian for nuclei and electrons

Classes of theoretical approaches for electronic problem

- continuum methods: density functional theory (DFT), variational+diffusion QMC, . .
- methods for lattice electrons

Microscopic modeling II

 $\triangleleft \leftrightarrow \bigtriangleup \vartriangleright 7$

Microscopic modeling II

$$H = \sum_{i=1}^{N_{e}} \frac{p_{i}^{2}}{2m} + \sum_{i} V(\mathbf{r}_{i}) + \sum_{i
reduction to valence electrons
$$\begin{array}{c} \textcircled{\textcircled{black}{0}} & \rule{\textcircled{black}{0}} & \rule{\end{array}{black}{0}} & \rule{$$$$

 $\triangleleft \leftrightarrow \bigtriangleup \vartriangleright 7$

Microscopic modeling II

$$H = \sum_{i=1}^{N_{e}} \frac{p_{i}^{2}}{2m} + \sum_{i} V(\mathbf{r}_{i}) + \sum_{i < j} \frac{e^{2}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$
reduction to valence electrons
$$\downarrow \qquad \textcircled{(e)} \qquad \end{matrix}{(e)} \qquad \end{matrix}{(e)} \qquad \textcircled{(e)} \qquad \textcircled{(e)} \qquad \textcircled{(e)} \qquad \end{matrix}{(e)} \qquad \textcircled{(e)} \qquad \textcircled{(e)} \qquad \textcircled{(e)} \qquad \end{matrix}{(e)} \qquad \textcircled{(e)} \qquad \textcircled{(e)} \qquad \end{matrix}{(e)} \qquad \textcircled{(e)} \qquad \textcircled{(e)} \qquad \end{matrix}{(e)} \qquad \end{matrix}{(e)} \qquad \end{matrix}{(e)} \qquad \end{matrix}{(e)} \qquad \end{matrix}{(e)}$$

Theoriekolloquium, Mainz · 10.01.2008 · Nils Blümer (Univ. Mainz, Germany)

 $\triangleleft \leftrightarrow \bigtriangleup \vartriangleright 7$

Approaches for Hubbard-type models

$$\hat{H} = \sum_{(i,j),\sigma} \mathbf{t}_{ij} \left(\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \text{h.c.} \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

Perturbation theory

- $U \rightarrow 0$: Hartree-Fock 2^{nd} order PT, . . .
- *t*/*U* → 0 (for *n* = 1)
 → Heisenberg model

finite clusters: ED, QMC

 $d \rightarrow 1$: Bethe ansatz, DMRG

Approaches for Hubbard-type models

$$\hat{H} = \sum_{(i,j),\sigma} \mathbf{t}_{ij} \left(\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \text{h.c.} \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

Perturbation theory

- $U \rightarrow 0$: Hartree-Fock 2^{nd} order PT, . . .
- *t*/*U* → 0 (for *n* = 1)
 → Heisenberg model

finite clusters: ED, QMC

Dynamical mean-field theory (DMFT): local self-energy $\Sigma(\mathbf{k}, \omega) \equiv \Sigma(\omega)$ [Metzner, Vollhardt, PRL (1989), Georges, Kotliar, PRL (1992), Jarrell, PRL (1992)]

- + non-perturbative \rightsquigarrow valid at MIT
- + dynamical on-site correlations preserved
- + in thermodynamic limit
- +/- exact for coordination $Z
 ightarrow \infty$

Single-particle Green function (lattice sites i, j):

$$G_{ij}(t_1, t_2) = -\langle c_j(t_2) c_i^{\dagger}(t_1) \rangle$$

Translation invariance in space and time: $G_{ij}(t_1, t_2) \equiv G_{j-i}(t_2 - t_1) \stackrel{\text{Fourier}}{\longrightarrow} G(\mathbf{k}, \omega)$

Single-particle Green function (lattice sites i, j):

$$G_{ij}(t_1, t_2) = -\langle c_j(t_2) c_i^{\dagger}(t_1) \rangle$$

Translation invariance in space and time: $G_{ij}(t_1, t_2) \equiv G_{j-i}(t_2 - t_1) \stackrel{\text{Fourier}}{\longrightarrow} G(\mathbf{k}, \omega)$

Single-particle Green function (lattice sites i, j):

$$G_{ij}(t_1, t_2) = -\langle c_j(t_2) c_i^{\dagger}(t_1) \rangle$$

Translation invariance in space and time: $G_{ij}(t_1, t_2) \equiv G_{j-i}(t_2 - t_1) \xrightarrow{\text{Fourier}} G(\mathbf{k}, \omega)$

Noninteracting limit (dispersion $\varepsilon_{\mathbf{k}}$): $G^{0}(\mathbf{k}, \omega) = \frac{1}{\omega + \mu - \varepsilon_{\mathbf{k}}}$

Self-energy Σ quantifies impact of interactions:

$$G(\boldsymbol{k},\omega) = \frac{1}{\omega + \mu - \varepsilon_{\boldsymbol{k}} - \Sigma(\boldsymbol{k},\omega)}$$

Single-particle Green function (lattice sites i, j):

$$G_{ij}(t_1, t_2) = -\langle c_j(t_2) c_i^{\dagger}(t_1) \rangle$$

Translation invariance in space and time: $G_{ij}(t_1, t_2) \equiv G_{j-i}(t_2 - t_1) \xrightarrow{\text{Fourier}} G(\mathbf{k}, \omega)$

$$G(\boldsymbol{k},\omega) = \frac{1}{\omega + \mu - \varepsilon_{\boldsymbol{k}} - \Sigma(\boldsymbol{k},\omega)}$$

Locality of self-energy $\Sigma(\mathbf{k}, \omega) \equiv \Sigma(\omega)$ within DMFT simplifies local Green function:

$$G(\omega) \equiv G_{ii}(\omega) = \int d\varepsilon \frac{N^0(\varepsilon)}{\omega + \mu - \varepsilon - \Sigma(\omega)}; \qquad N^0(\varepsilon) = \frac{1}{N} \sum_{\mathbf{k}} \delta(\varepsilon - \varepsilon_{\mathbf{k}})$$

k integrated Dyson equation

noninteracting DOS

Mott transition within DMFT

Fully frustrated 1-band model, energy scale: bandwidth W = 4

Mott transition within DMFT

Fully frustrated 1-band model, energy scale: bandwidth W = 4

Iterative solution of DMFT equations

- 0. Initialize self-energy
- 1. Solve Dyson equation
- 2. Solve single impurity Anderson model (SIAM)

Iterative solution of DMFT equations

- 0. Initialize self-energy
- 1. Solve Dyson equation
- 2. Solve single impurity Anderson model (SIAM)

Impurity solver:

- Iterative perturbation theory (IPT; not controlled)
- Quantum Monte-Carlo (QMC)

Iterative solution of DMFT equations

- 0. Initialize self-energy
- 1. Solve Dyson equation
- 2. Solve single impurity Anderson model (SIAM)

Impurity solver:

- Iterative perturbation theory (IPT; not controlled)
- Quantum Monte-Carlo (QMC)
- Exact diagonalization (ED; large finite-size errors)
- Numerical renormalization group (NRG; 1-2 bands)
- Density matrix renormalization group (DMRG)
- Self-energy functional theory (SFT) + ED

Green function G in imaginary time (fermionic Grassmann variables ψ , ψ^*):

$$G_{\sigma}(\tau_{2}-\tau_{1}) = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\psi^{*}] \psi_{\sigma}(\tau_{1})\psi_{\sigma}^{*}(\tau_{2}) \exp\left[\mathcal{A}_{0} - U\sum_{\sigma\sigma'}\int_{0}^{\beta} d\tau \psi_{\sigma}^{*}\psi_{\sigma}\psi_{\sigma'}^{*}\psi_{\sigma'}\right]$$

Green function G in imaginary time (fermionic Grassmann variables ψ , ψ^*):

$$G_{\sigma}(\tau_{2}-\tau_{1}) = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\psi^{*}] \psi_{\sigma}(\tau_{1})\psi_{\sigma}^{*}(\tau_{2}) \exp\left[\mathcal{A}_{0} - U\sum_{\sigma\sigma'}\int_{0}^{\beta} d\tau \psi_{\sigma}^{*}\psi_{\sigma}\psi_{\sigma'}^{*}\psi_{\sigma'}\right]$$

Discretization $\beta = \Lambda \Delta \tau$, Trotter decoupling $e^{-\beta(\hat{T}+\hat{V})} = \lim_{\Lambda \to \infty} \left[e^{-\Delta \tau \hat{T}} e^{-\Delta \tau \hat{V}} \right]^{\Lambda}$

Green function G in imaginary time (fermionic Grassmann variables ψ , ψ^*):

$$G_{\sigma}(\tau_{2}-\tau_{1}) = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\psi^{*}] \psi_{\sigma}(\tau_{1})\psi_{\sigma}^{*}(\tau_{2}) \exp\left[\mathcal{A}_{0} - U\sum_{\sigma\sigma'}\int_{0}^{\beta} d\tau \psi_{\sigma}^{*}\psi_{\sigma}\psi_{\sigma'}^{*}\psi_{\sigma'}\right]$$

Discretization $\beta = \Lambda \Delta \tau$, Trotter decoupling $e^{-\beta(\hat{T}+\hat{V})} = \lim_{\Lambda \to \infty} \left[e^{-\Delta \tau \hat{T}} e^{-\Delta \tau \hat{V}} \right]^{\Lambda}$

Use
$$\hat{n}_{\uparrow}\hat{n}_{\downarrow} = \frac{1}{2}[\hat{n}_{\uparrow} + \hat{n}_{\downarrow} - (\hat{n}_{\uparrow} - \hat{n}_{\downarrow})^{2}];$$
 discrete Hubbard-Stratonovich transformation
 $\exp[\Delta \tau U(\hat{n}_{\uparrow} - \hat{n}_{\downarrow})^{2}/2] = \frac{1}{2}\sum_{s=\pm 1}\exp[\lambda s(\hat{n}_{\uparrow} - \hat{n}_{\downarrow})];$ $\cosh(\lambda) = \exp(\Delta \tau U/2)$

$$\longrightarrow \bigwedge^{*} + \cdots$$
 Wick theorem:
$$G = \frac{\sum M \det\{M\}}{\sum \det\{M\}}$$

Green function G in imaginary time (fermionic Grassmann variables ψ , ψ^*):

$$G_{\sigma}(\tau_{2}-\tau_{1}) = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\psi^{*}] \psi_{\sigma}(\tau_{1})\psi_{\sigma}^{*}(\tau_{2}) \exp\left[\mathcal{A}_{0} - U\sum_{\sigma\sigma'}\int_{0}^{\beta} d\tau \psi_{\sigma}^{*}\psi_{\sigma}\psi_{\sigma'}^{*}\psi_{\sigma'}\right]$$

Discretization $\beta = \Lambda \Delta \tau$, Trotter decoupling $e^{-\beta(\hat{T}+\hat{V})} = \lim_{\Lambda \to \infty} \left[e^{-\Delta \tau \hat{T}} e^{-\Delta \tau \hat{V}} \right]^{\Lambda}$

Use
$$\hat{n}_{\uparrow}\hat{n}_{\downarrow} = \frac{1}{2}[\hat{n}_{\uparrow} + \hat{n}_{\downarrow} - (\hat{n}_{\uparrow} - \hat{n}_{\downarrow})^{2}];$$
 discrete Hubbard-Stratonovich transformation
 $\exp[\Delta \tau U(\hat{n}_{\uparrow} - \hat{n}_{\downarrow})^{2}/2] = \frac{1}{2}\sum_{s=\pm 1}\exp[\lambda s(\hat{n}_{\uparrow} - \hat{n}_{\downarrow})];$ $\cosh(\lambda) = \exp(\Delta \tau U/2)$

$$\longrightarrow \bigcap_{i=1}^{\infty} f_{i} \bigoplus_{i=1}^{\infty} f_{i} \bigoplus_{i=1}$$

Metropolis MC importance sampling over auxiliary Ising field $\{s\}$: 2^{Λ} configurations

+ numerically exact, + no sign problem, - effort scales as T^{-3}

Contributions to DMFT-QMC error bars:

 \circ statistical fluctuations + warm-up

convergency (of self-consistency cycle)

• discretization (Trotter error and Fourier transform)

Contributions to DMFT-QMC error bars:

- statistical fluctuations + warm-up
- convergency (of self-consistency cycle)
- discretization (Trotter error and Fourier transform)

Example: half-filled Hubbard model, U = 5, W = 4, T = 0.04 (Mott insulator)

Contributions to DMFT-QMC error bars:

- statistical fluctuations + warm-up
- convergency (of self-consistency cycle)
- discretization (Trotter error and Fourier transform)

Example: half-filled Hubbard model, U = 5, W = 4, T = 0.04 (Mott insulator)

Theoriekolloquium, Mainz · 10.01.2008 · Nils Blümer (Univ. Mainz, Germany)

Special issue: Fourier transformations in DMFT-QMC cycle

Iterative solution of DMFT equations (for imaginary-time impurity solver)

Special issue: Fourier transformations in DMFT-QMC cycle

Iterative solution of DMFT equations (for imaginary-time impurity solver)

Naive discrete Fourier transformation \rightsquigarrow oscillations (instead of $G(\omega) \xrightarrow{\omega \to \infty} 1/\omega$)

Special issue: Fourier transformations in DMFT-QMC cycle

Iterative solution of DMFT equations (for imaginary-time impurity solver)

Naive discrete Fourier transformation \rightsquigarrow oscillations (instead of $G(\omega) \xrightarrow{\omega \to \infty} 1/\omega$)

1st solution: correct unphysical behavior for $|\omega| \lesssim \omega_{Nyquist}$ by transformation [UImke]

 2^{nd} solution: interpolate $G_{QMC}(\tau)$ by cubic splines [Jarrell, Krauth, Gull, ...]

But: $\frac{d^2G(\tau)}{d\tau^2}$ maximal for $\tau \to 0, \beta \longrightarrow$ natural boundary conditions inappropriate
2^{nd} solution: interpolate $G_{QMC}(\tau)$ by cubic splines [Jarrell, Krauth, Gull, ...]

But: $\frac{d^2 G(\tau)}{d\tau^2}$ maximal for $\tau \to 0, \beta \longrightarrow$ natural boundary conditions inappropriate

- adjust boundary cond. [Oudovenko]
- spline-fit only difference w.r.t. reference problem:
 - IPT [Jarrell]

 2^{nd} solution: interpolate $G_{QMC}(\tau)$ by cubic splines [Jarrell, Krauth, Gull, ...]

But:
$$\frac{d^2G(\tau)}{d\tau^2}$$
 maximal for $\tau \to 0, \beta \longrightarrow$ natural boundary conditions inappropriate

 $\Sigma_{\sigma}(\omega) = U(\langle \hat{n}_{-\sigma} \rangle - \frac{1}{2}) \omega^{0} + U^{2} \langle \hat{n}_{-\sigma} \rangle (1 - \langle \hat{n}_{-\sigma} \rangle) \omega^{-1} + \mathcal{O}(\omega^{-2})$

Sensitive test: self-energy $\Sigma(i\omega_n)$ for insulating phase (T = 0.1, U = 5.0)

Rapid convergence at all frequencies for "QMC + $1/\omega$ " DMFT solver

 $\triangleleft \leftrightarrow \bigtriangleup \vartriangleright 16$

Selected applications

High-precision calculations for 1-band model, extrapolation $T \rightarrow 0$: benchmark results (*E*, *D*, *Z*) unmatched by ED, DMRG, PQMC, NRG revealed errors in weak-coupling expansions

Orbital-selective Mott transitions in 2-band model

[C. Knecht, NB, and P.G.J. van Dongen, PRB 72, 081103(R) (2005)]

Efficiency of QMC DMFT solvers

New development: continuous-time QMC algorithms

1. weak-coupling expansion [Rubtsov, Savkin, Lichtenstein, PRB (2005)]

2. hybridization expansion [Werner et al., PRL (2006)]

Efficiency of QMC DMFT solvers

New development: continuous-time QMC algorithms

1. weak-coupling expansion [Rubtsov, Savkin, Lichtenstein, PRB (2005)]

2. hybridization expansion [Werner et al., PRL (2006)]

CT-QMC methods: smaller matrices All QMC methods: effort $\propto \Lambda^3$

Efficiency of QMC DMFT solvers

New development: continuous-time QMC algorithms

1. weak-coupling expansion [Rubtsov, Savkin, Lichtenstein, PRB (2005)]

2. hybridization expansion [Werner et al., PRL (2006)]

CT-QMC methods: smaller matrices All QMC methods: effort $\propto \Lambda^3$

Claim [Troyer (2006)]: "CT-QMC more efficient than HF-QMC by orders of magnitude"

Comparisons at constant CPU time: kinetic energy (at U = W = 4) 140 CPU hours on AMD Opteron 244 (serial) / mix of Opterons (parallel)

Similar precision for HF-QMC and weak-coupling CT-QMC Systematic errors in hybridization CT-QMC data! [NB, PRB **76**, 205120 (2007)]

 $\triangleleft \leftrightarrow \bigtriangleup \vartriangleright$ 19

Comparison for total energy (at U = W = 4)

HF-QMC more efficient (higher precision at same cost) [NB, PRB 76, 205120 (2007)]

$$\triangleleft \leftrightarrow \bigtriangleup \vartriangleright 20$$

Unbiased Green functions and spectra from HF-QMC

State of the art: analytic continuation (using MEM) of imaginary-time Green function at fixed finite (often large) $\Delta \tau \rightsquigarrow$ bias

Unbiased Green functions and spectra from HF-QMC

State of the art: analytic continuation (using MEM) of imaginary-time Green function at fixed finite (often large) $\Delta \tau \rightarrow \text{bias}$

Reason:

no obvious extrapolation scheme for $G(\tau)$

Low temperature ("beyond HF-QMC"): large $\Delta \tau \rightsquigarrow$ large biases [NB, arXiv:0712.1290]

Unbiased Green functions and spectra from HF-QMC

State of the art: analytic continuation (using MEM) of imaginary-time Green function at fixed finite (often large) $\Delta \tau \rightarrow \text{bias}$

Reason:

no obvious extrapolation scheme for $G(\tau)$

Low temperature ("beyond HF-QMC"): large $\Delta \tau \rightsquigarrow$ large biases [NB, arXiv:0712.1290]

New Green function extrapolation scheme

- 1. average $G(\tau)$ over parallel runs for same impurity model
- 2. average $\log[-G(\tau)]$ over iterations (~ geometric average for $G(\tau)$)
- 3. interpolate via difference Green function $G_{QMC}(\tau) G_{model}(\tau) \rightsquigarrow$ common grid

New Green function extrapolation scheme

- 1. average $G(\tau)$ over parallel runs for same impurity model
- 2. average $\log[-G(\tau)]$ over iterations (~ geometric average for $G(\tau)$)
- 3. interpolate via difference Green function $G_{QMC}(\tau) G_{model}(\tau) \rightsquigarrow$ common grid
- 4. extrapolate $\log[-G(\tau)]$ using cubic least-squares fits, overweighting low $\Delta \tau$

Result: unbiased, numerically exact Green function

Excellent agreement with hybridization expansion CT-QMC [Werner et al., PRL (2006)]

2nd and 1st order derivatives of Green function

Why average and extrapolation on logarithmic scale?

Difference metal-insulator and $\Delta \tau$ dependence involves orders of magnitude! Even maximum statistical/iteration errors nearly order of magnitude

Uniform $\Delta \tau$ dependence, position of max error independent of $\Delta \tau$ and phase!

26

 \triangleright

 \triangleleft

Analytic continuation using Padé approximant for self-energy

First spectra without discretization error from HF-QMC, at ultra-low TMethod directly applicable, e.g., to LDA+DMFT calculations [NB, arXiv:0712.1290]

$$\triangleleft \leftrightarrow \bigtriangleup \vartriangleright 27$$

Multigrid Hirsch-Fye quantum Monte Carlo algorithm

State of the art: (a) conventional HF-QMC

(b) a posteriori extrapolation of selected observables

Multigrid Hirsch-Fye quantum Monte Carlo algorithm

State of the art: (a) conventional HF-QMC

(b) a posteriori extrapolation of selected observables

(c) Multigrid HF-QMC: internal elimination of Trotter error
 → quasi continuous time algorithm [NB, arXiv:0801.1222]

Schematic comparison via generalized Ginzburg-Landau functionals

 $\triangleleft \leftrightarrow \bigtriangleup \vartriangleright 29$

Comparison: double occupancy $D = \langle n_{i\uparrow} n_{i\downarrow} \rangle$ near Mott transition

Conventional HF-QMC:no insulating solution for $\Delta \tau \gtrsim 0.4$
very irregular $\Delta \tau$ dependence beyond $\Delta \tau \approx 0.3$ Multigrid HF-QMC:vastly larger useful range of $\Delta \tau$

Systematic study: impact of grid range (on double occupancy)

Multigrid HF-QMC usually "numerically exact" for $au_{\min} \lesssim 0.3$

Efficiency: potential energy $E_{pot} = UD$

No more "difficult observables" for multigrid HF-QMC Higher precision than CT-QMC methods at same effort

Spectral weight transfer at the Mott transition

Question: how does the Mott metal-insulator transition take place, precisely?

Spectral weight transfer at the Mott transition

Question: how does the Mott metal-insulator transition take place, precisely?

Dynamical DMRG \rightsquigarrow Hubbard band subpeaks in metallic phase (at T = 0) [Karski, Raas, Uhrig, PRB (2005)]

Spectral weight transfer at the Mott transition

Question: how does the Mott metal-insulator transition take place, precisely?

Dynamical DMRG \rightsquigarrow Hubbard band subpeaks in metallic phase (at T = 0) [Karski, Raas, Uhrig, PRB (2005)] Verify using multigrid HF-QMC... Analysis via difference of spectral functions (symmetric in ω) at U = 5.2

Problems for QMC: (i) analytic continuation of QMC data ill-conditioned (ii) no $T \rightarrow 0$ extrapolation of spectra

Difference Green functions in imaginary time

Multigrid HF-QMC data precise within linewidths [NB, arXiv:0801.1222] DDMRG overestimates spectral weight transfer at U = 5.2 by about 10%!

Difference spectra

Similarities, but no indication for feature at $\omega = 1.3$ in QMC data QMC spectral data via Padé interpolation, may be overly smooth [NB, arXiv:0801.1222]

Thermal breakdown of a Fermi liquid

Fermi liquid theory:linear specific heat $C_V = \gamma T$ linear entropy $S = \gamma T$ quadratic resistivity $\rho \propto T^2$

for "low enough" T

When/how do these laws break down?

Thermal breakdown of a Fermi liquid

Fermi liquid theory: linear specific heat linear entropy quadratic resistivity

$$c_V = \gamma T$$

 $S = \gamma T$
 $ho \propto T^2$

Exact diagonalization study (8 sites)

When/how do these laws break down?

Theoretical explanation: kink in self-energy \rightsquigarrow kink in C_V

 $\triangleleft \leftrightarrow \bigtriangleup \vartriangleright 38$

Kink feature visible in specific heat of heavy fermion LiV_2O_4 ?

[A. Toschi, M. Capone, C. Castellani, K. Held, arXiv:0712.3723]

Check using QMC. . .

Conventional HF-QMC at constant discretization $\Delta \tau$,

numerical derivatives from parabolic interpolation of tripels

Roughly consistent with ED, but: no significant kinks, maximum at $T \approx 0.08$?
Best (only?) way to exclude kink: rescale data to straight line!

Best (only?) way to exclude kink: rescale data to straight line! (i) consider C_V/T

Best (only?) way to exclude kink: rescale data to straight line! (i) consider C_V/T (ii) $T \longrightarrow T^2$

Best (only?) way to exclude kink: rescale data to straight line! (i) consider C_V/T (ii) $T \longrightarrow T^2$ (iii) logarithmic scale

New hypothesis (for quasiparticle contribution): $c_V(T) \approx \gamma T e^{-aT^2}$

Now: more QMC sweeps + iterations, extended T range, smaller $\Delta \tau$ derivatives with error bars (via parabolic least-squares fits to 5-tupels)

Now: more QMC sweeps + iterations, extended T range, smaller $\Delta \tau$ derivatives with error bars (via parabolic least-squares fits to 5-tupels)

Now: more QMC sweeps + iterations, extended T range, smaller $\Delta \tau$ derivatives with error bars (via parabolic least-squares fits to 5-tupels)

Parametric extrapolation $\Delta \tau \rightarrow \mathbf{0}$ is reliable

Independent check of γ via quasiparticle weight (from self-energy)

Perfect agreement (also with PRB 56, 205120 (2007))

Now back to unscaled specific heat

Exponential law valid far beyond fit range ($T \leq 0.084$)

ED raw data has reasonable accuracy, but fit lines are incorrect

Theoriekolloquium, Mainz · 10.01.2008 · Nils Blümer (Univ. Mainz, Germany)

Is entropy consistent? Yes!

$$S(T) = \int_{0}^{T} dT' \frac{c_{V}(T')}{T'} = \int_{0}^{T} dT' \, 7.83 \, T' e^{-95.14 \, T'^2} \stackrel{T \to \infty}{\longrightarrow} 0.711 \approx 0.693 \approx \log(2)$$

Interpretation: free spins at $T \gtrsim 0.2$ (in subspace without double occupancies)

Is entropy consistent? Yes!

$$S(T) = \int_{0}^{T} dT' \frac{c_{V}(T')}{T'} = \int_{0}^{T} dT' \, 7.83 \, T' e^{-95.14 \, T'^2} \stackrel{T \to \infty}{\longrightarrow} 0.711 \approx 0.693 \approx \log(2)$$

Interpretation: free spins at $T \gtrsim 0.2$ (in subspace without double occupancies)

Generalized Fermi liquid law for quasiparticle contribution to specific heat

$$c_V(T) = \frac{2\pi}{3Z}T \exp\left[-(T/T_0)^2\right]; \quad T_0 = \frac{3\log(2)}{\pi^{3/2}}Z$$
 (Bethe DOS)

Single (low-frequency) qp weight $Z = \frac{d\Sigma(\omega)}{d\omega}\Big|_{\omega=0}$ governs C_V !

Prediction with no free parameters, to be tested at smaller/larger U.

- New methods: unbiased Green functions from conventional HF-QMC numerically exact multigrid HF-QMC algorithm
- Applications: spectral weight transfer at Mott transition breakdown of a Fermi liquid

- New methods: unbiased Green functions from conventional HF-QMC numerically exact multigrid HF-QMC algorithm
- Applications: spectral weight transfer at Mott transition breakdown of a Fermi liquid
- Not shown: Orbital-selective Mott transitions (with C. Knecht, P. van Dongen) Materials with high spin polarization (w. E. Jakobi, P. van Dongen)

- New methods: unbiased Green functions from conventional HF-QMC numerically exact multigrid HF-QMC algorithm
- Applications: spectral weight transfer at Mott transition breakdown of a Fermi liquid
- Not shown: Orbital-selective Mott transitions (with C. Knecht, P. van Dongen) Materials with high spin polarization (w. E. Jakobi, P. van Dongen)

Outlook

Wide application of new methods (with generalizations), DFG projects

- New methods: unbiased Green functions from conventional HF-QMC numerically exact multigrid HF-QMC algorithm
- Applications: spectral weight transfer at Mott transition breakdown of a Fermi liquid
- Not shown: Orbital-selective Mott transitions (with C. Knecht, P. van Dongen) Materials with high spin polarization (w. E. Jakobi, P. van Dongen)

Outlook

Wide application of new methods (with generalizations), DFG projects Flavor-selective Mott transitions in ultracold quantum gases (SFB/TR 49) Material-specific multiband calculations in context of LDA+DMFT Fundamental model issues, e.g.: full thermodynamic information (1 band)

