# Quantum Monte Carlo simulations of ultracold fermions on optical lattices within dynamical mean-field theory

Nils Blümer and Elena Gorelik, Univ. Mainz

# Outline

Systems with strong electronic (fermionic) correlations Approaches for correlated Fermi systems Auxiliary-field Hirsch-Fye QMC algorithm; Multigrid HF-QMC Paramagnetic Mott transitions in 3-flavor mixtures Melting of an antiferromagnet in an optical trap

# Systems with strong electronic/fermionic correlations

Paramagnetic Mott metal-insulator transition

Prototype example:  $V_2O_3$  doped with Cr/Ti and/or under pressure





# Systems with strong electronic/fermionic correlations

### Paramagnetic Mott metal-insulator transition

Prototype example:  $V_2O_3$  doped with Cr/Ti and/or under pressure

Phase diagram 500 cross-over 400 Mott Insulator 300 (¥) -200 Strongly correlated metal 100 Antiferromagnetic Insulator -8000 8000 16000 24000 0 0 P (bar)

**Electrical conductivity** 



### Ab initio calculations for correlated systems: LDA+DMFT

Recent "hot topic": kinks in photoemission spectra



#### Strongly correlated electron systems – close to a Mott transition

3

 $\triangle$ 

 $\triangleright$ 

### Itinerant ferromagnetism and half-metallicity





# Spin models insufficient

HMS on Mathematical Physics (Salmhofer/Bach)  $\cdot$  2009/11/05  $\cdot$  Nils Blümer (Univ. Mainz, Germany)

 $\triangleleft \leftrightarrow \bigtriangleup \vartriangleright 4$ 

### Itinerant ferromagnetism and half-metallicity



 $\triangleright$ 

Complex phases of cuprate and organic superconductors

High- $T_c$  physics contained in 2D Hubbard model?



Are antiferromagnetic (AF) and Mott insulating phases essential for superconductivity?



5

 $\triangle$ 

Experimental systems: small dilute clouds of about  $10^6$  ultracold atoms  $\rightsquigarrow$  need trap

Optical dipole trap (2 beams)



$$V_{\text{dipole}}(\boldsymbol{r}) = -\boldsymbol{d} \cdot \boldsymbol{E}(\boldsymbol{r}) \propto lpha(\omega_{\text{L}}) \left| \boldsymbol{E}(\boldsymbol{r}) 
ight|^2$$

time-averaged intensity  $|\boldsymbol{E}(\boldsymbol{r})|^2$ 

 $\lhd \quad \bigtriangleup \quad \bigtriangleup \quad \vartriangleright$ 

Experimental systems: small dilute clouds of about  $10^6$  ultracold atoms  $\rightsquigarrow$  need trap

Optical dipole trap (2 beams)



$$V_{ ext{dipole}}(m{r}) = -m{d}\cdotm{E}(m{r}) \propto lpha(\omega_{ ext{L}}) \left|m{E}(m{r})
ight|^2$$

time-averaged intensity  $|\boldsymbol{E}(\boldsymbol{r})|^2$ 

polarizability  $\alpha(\omega_{\rm L})$ changes sign at  $\omega_0$ 



 $\leftrightarrow \Delta \triangleright 6$ 

 $\triangleleft$ 

Experimental systems: small dilute clouds of about  $10^6$  ultracold atoms  $\rightsquigarrow$  need trap

Optical dipole trap (2 beams)



$$V_{ ext{dipole}}(m{r}) = -m{d}\cdotm{E}(m{r}) \propto lpha(\omega_{ ext{L}}) \left|m{E}(m{r})
ight|^2$$

time-averaged intensity  $|\boldsymbol{E}(\boldsymbol{r})|^2$ 

polarizability  $\alpha(\omega_L)$ changes sign at  $\omega_0$ 



Standing wave (from coherent counterpropagating beams) ~> modulated potential



Beam profile: (anti) trapping

 $\lhd \quad \bigtriangleup \quad \bigtriangleup \quad \vartriangleright$ 

Experimental systems: small dilute clouds of about  $10^6$  ultracold atoms  $\rightsquigarrow$  need trap

Optical dipole trap (2 beams)



$$V_{ ext{dipole}}(m{r}) = -m{d}\cdotm{E}(m{r}) \propto lpha(\omega_{ ext{L}}) \left|m{E}(m{r})
ight|^2$$

time-averaged intensity  $|\boldsymbol{E}(\boldsymbol{r})|^2$ 

polarizability  $\alpha(\omega_L)$  changes sign at  $\omega_0$ 



Standing wave (from coherent counterpropagating beams) ~> modulated potential



- Beam profile: (anti) trapping
- 1 pair of lasers  $\rightsquigarrow$  pancakes
- 2 pairs of lasers  $\rightsquigarrow$  tubes
- 3 pairs of lasers ~> lattice



 $\triangle$ 

#### Interactions can be tuned via Feshbach resonances

Interactions can be tuned via Feshbach resonances (here in magnetic field B) short ranged: characterized by scattering length a – both signs possible!



⊳ 7

First evidence of strongly correlations in cold atoms: bosonic Mott transition



Time-of-flight image – momentum distribution

ultracold bosons on optical lattice (Bloch group, 2002)

 $\lhd \quad \longleftrightarrow \quad \bigtriangleup \quad \vartriangleright$ 

First evidence of strongly correlations in cold atoms: bosonic Mott transition



Time-of-flight image – momentum distribution



ultracold bosons on optical lattice (Bloch group, 2002)

 $\lhd \quad \longleftrightarrow \quad \bigtriangleup \quad \vartriangleright$ 

First evidence of strongly correlations in cold atoms: bosonic Mott transition



Time-of-flight image – momentum distribution



(Bloch group, 2002)

**Correlated ultracold quantum gases on optical lattices: fermions** 1<sup>st</sup> step: visualize (noninteracting) band structure in TOF experiment Fermi surface mapping of 1-component system (**spinless fermions**)



C



 $\lhd \ \bigtriangleup \ \diamondsuit \ \bowtie$ 

### Correlated ultracold quantum gases on optical lattices: fermions 1<sup>st</sup> step: visualize (noninteracting) band structure in TOF experiment

Fermi surface mapping of 1-component system (**spinless fermions**)







Filled 1<sup>st</sup> Brillouin zone: band insulator [Köhl et al, PRL (2005)]

HMS on Mathematical Physics (Salmhofer/Bach) · 2009/11/05 · Nils Blümer (Univ. Mainz, Germany)



 $\leftrightarrow \bigtriangleup \rhd 9$ 

 $\triangleleft$ 

Recent breakthrough: paramagnetic Mott transition in fermionic 2-flavor mixtures



Concept: squeeze atomic cloud by variation of trapping potential (at constant interaction and hopping), measure cloud diameter

incompressible Mott phases should show up as plateaus in cloud size (for  $U > U_c$ )

 $\triangle$   $\triangleright$  10

Recent breakthrough: paramagnetic Mott transition in fermionic 2-flavor mixtures



Concept: squeeze atomic cloud by variation of trapping potential (at constant interaction and hopping), measure cloud diameter

incompressible Mott phases should show up as plateaus in cloud size (for  $U > U_c$ )

**Problem:** measurements integrate over system, edges always metallic

Simulations (here DMFT+NRG) essential for interpretation of data!

#### Further MIT observables: column density, fraction of atoms with double occupations



#### Further MIT observables: column density, fraction of atoms with double occupations



Many other phenomena seen: superconductivity, vortices, BEC-BCS crossover, ....

Urgent todo items:

Antiferromagnetism (staggered order) in ultracold fermions Problems:

- (i) difficult to reach sufficiently low temperatures/entropies
- (ii) detection of order parameter is not straightforward



Urgent todo items:

Antiferromagnetism (staggered order) in ultracold fermions Problems:

- (i) difficult to reach sufficiently low temperatures/entropies
- (ii) detection of order parameter is not straightforward



12

Multiflavor phenomena, e.g. trions versus color superconductivity





#### General Hamiltonian for nuclei and electrons

$$H = \sum_{i=1}^{N_e} \frac{p_i^2}{2m} + \sum_{k=1}^{L} \frac{P_k^2}{2M_k} + \sum_{k$$

General Hamiltonian for nuclei and electrons

$$H = \sum_{i=1}^{N_e} \frac{\mathbf{p}_i^2}{2m} + \sum_{k=1}^{L} \frac{\mathbf{P}_k^2}{2M_k} + \sum_{k  
Born-Oppenheimer  
approximation (0<sup>th</sup>order)$$

#### General Hamiltonian for nuclei and electrons

#### General Hamiltonian for nuclei and electrons

#### **Classes of theoretical approaches for electronic problem**

- continuum methods: density functional theory, variational+diffusion QMC, ...
- methods for lattice electrons

### Derivation of lattice models

### Derivation of lattice models

### Derivation of lattice models

$$H = \sum_{i=1}^{N_{e}} \frac{p_{i}^{2}}{2m} + \sum_{i} V(\mathbf{r}_{i}) + \sum_{i < j} \frac{e^{2}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$
reduction to valence electrons
$$\downarrow \qquad \textcircled{(e)} \qquad \end{matrix}{(e)} \qquad \textcircled{(e)} \qquad \textcircled{(e)} \qquad \end{matrix}{(e)} \qquad \end{matrix}{(e)}$$

14

 $\lhd \quad \bigtriangleup \quad \bigtriangleup \quad \vartriangleright$ 

HMS on Mathematical Physics (Salmhofer/Bach) · 2009/11/05 · Nils Blümer (Univ. Mainz, Germany)

$$\begin{aligned} & \stackrel{\text{Is}}{\underset{j=1}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset$$

HMS on Mathematical Physics (Salmhofer/Bach) · 2009/11/05 · Nils Blümer (Univ. Mainz, Germany) <

### Approaches for Hubbard-type models

$$\hat{H} = \sum_{(i,j),\sigma} \mathbf{t}_{ij} \left( \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \text{h.c.} \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

Perturbation theory

- $U \rightarrow 0$ : Hartree-Fock  $2^{nd}$  order PT, . . .
- *t*/*U* → 0 (for *n* = 1)
   → Heisenberg model

finite clusters: ED, QMC





 $d \rightarrow 1$ : Bethe ansatz, DMRG



### Approaches for Hubbard-type models

$$\hat{H} = \sum_{(i,j),\sigma} \mathbf{t}_{ij} \left( \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \text{h.c.} \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

Perturbation theory

- $U \rightarrow 0$ : Hartree-Fock  $2^{nd}$  order PT, . . .
- *t*/*U* → 0 (for *n* = 1)
   → Heisenberg model

finite clusters: ED, QMC







Dynamical mean-field theory (DMFT): local self-energy  $\Sigma(\mathbf{k}, \omega) \equiv \Sigma(\omega)$ [Metzner, Vollhardt, PRL (1989), Georges, Kotliar, PRL (1992), Jarrell, PRL (1992)]

- + non-perturbative  $\rightsquigarrow$  valid at MIT
- dynamical on-site correlations preserved
- + in thermodynamic limit
- +/- exact for coordination  $Z 
  ightarrow \infty$



 $\triangleleft$ 

### Iterative solution of DMFT equations

- 0. Initialize self-energy
- 1. Solve Dyson equation
- 2. Solve single impurity Anderson model (SIAM)


### Iterative solution of DMFT equations

- 0. Initialize self-energy
- 1. Solve Dyson equation
- 2. Solve single impurity Anderson model (SIAM)



#### Impurity solver:

- Iterative perturbation theory (IPT; not controlled)
- Quantum Monte Carlo (QMC)
- Exact diagonalization (ED; large finite-size errors)
- Numerical renormalization group (NRG; 1-2 bands)
- Density matrix renormalization group (DMRG)
- Self-energy functional theory (SFT) + ED



 $\triangle > 16$ 

 $\leftarrow$ 

<1

General task: evaluation of (high-dimensional) sums/integrals

Simple example: quadrature of a convex function (in d = 1)



17

 $\triangleright$ 

General task: evaluation of (high-dimensional) sums/integrals

Simple example: quadrature of a convex function (in d = 1)



General task: evaluation of (high-dimensional) sums/integrals

Simple example: quadrature of a convex function (in d = 1)



General task: evaluation of (high-dimensional) sums/integrals

Simple example: quadrature of a convex function (in d = 1)



General task: evaluation of (high-dimensional) sums/integrals

Simple example: quadrature of a convex function (in d = 1)



General task: evaluation of (high-dimensional) sums/integrals

Simple example: quadrature of a convex function (in d = 1)



17

 $\triangleright$ 





MC results are non-deterministic: only meaningful within statistical error bars! In this case, the deterministic method converges much faster (and very regularly)



MC results are non-deterministic: only meaningful within statistical error bars! In this case, the deterministic method converges much faster (and very regularly)



MC results are non-deterministic: only meaningful within statistical error bars! In this case, the deterministic method converges much faster (and very regularly) Application of Monte Carlo in Statistical Physics

$$\langle O \rangle = \sum_{i} p_{i} O_{i}, \qquad p_{i} = \frac{e^{-E_{i}/(k_{\rm B}T)}}{\mathcal{Z}} \equiv \frac{\tilde{p}_{i}}{\mathcal{Z}}, \qquad \mathcal{Z} = \sum_{i} e^{-E_{i}/(k_{\rm B}T)}$$

Simple Monte Carlo: Estimation of both sums from a number N of equally probable configurations. Problem: typically  $\sqrt{\operatorname{var}\{p\}} \gg \overline{p}$ .

Solution: approach target prob. distribution by Markov chain (needs only  $p_i/p_j$ )

Application of Monte Carlo in Statistical Physics

$$\langle O \rangle = \sum_{i} p_{i} O_{i}, \qquad p_{i} = \frac{e^{-E_{i}/(k_{\rm B}T)}}{\mathcal{Z}} \equiv \frac{\tilde{p}_{i}}{\mathcal{Z}}, \qquad \mathcal{Z} = \sum_{i} e^{-E_{i}/(k_{\rm B}T)}$$

Simple Monte Carlo: Estimation of both sums from a number N of equally probable configurations. Problem: typically  $\sqrt{\operatorname{var}\{p\}} \gg \overline{p}$ .

Importance Sampling MC: Probability distribution given by Boltzmann weights  $p_i$ . Problem: Normalization  $1/\mathcal{Z}$  unknown.

Solution: approach target prob. distribution by Markov chain (needs only  $p_i/p_j$ )

Green function G in imaginary time (fermionic Grassmann variables  $\psi$ ,  $\psi^*$ ):

$$G_{\sigma}(\tau_{2}-\tau_{1}) = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\psi^{*}] \psi_{\sigma}(\tau_{1})\psi_{\sigma}^{*}(\tau_{2}) \exp\left[\mathcal{A}_{0} - U\sum_{\sigma\sigma'}\int_{0}^{\beta} d\tau \psi_{\sigma}^{*}\psi_{\sigma}\psi_{\sigma'}^{*}\psi_{\sigma'}\right]$$

Green function G in imaginary time (fermionic Grassmann variables  $\psi$ ,  $\psi^*$ ):

$$G_{\sigma}(\tau_{2}-\tau_{1}) = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\psi^{*}] \psi_{\sigma}(\tau_{1})\psi^{*}_{\sigma}(\tau_{2}) \exp\left[\mathcal{A}_{0} - U\sum_{\sigma\sigma'} \int_{0}^{\beta} d\tau \,\psi^{*}_{\sigma}\psi_{\sigma}\psi^{*}_{\sigma'}\psi_{\sigma'}\right]$$

(i) Imaginary-time discretization  $\beta = \Lambda \Delta \tau$ 

(ii) Trotter decoupling  $e^{-\beta(\hat{T}+\hat{V})} \approx \left[e^{-\Delta \tau \hat{T}} e^{-\Delta \tau \hat{V}}\right]^{\Lambda}$ 

Green function G in imaginary time (fermionic Grassmann variables  $\psi$ ,  $\psi^*$ ):

$$G_{\sigma}(\tau_{2}-\tau_{1}) = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\psi^{*}] \psi_{\sigma}(\tau_{1})\psi^{*}_{\sigma}(\tau_{2}) \exp\left[\mathcal{A}_{0} - U\sum_{\sigma\sigma'} \int_{0}^{\beta} d\tau \,\psi^{*}_{\sigma}\psi_{\sigma}\psi^{*}_{\sigma'}\psi_{\sigma'}\right]$$

(i) Imaginary-time discretization  $\beta = \Lambda \Delta \tau$ 

(ii) Trotter decoupling  $e^{-\beta(\hat{T}+\hat{V})} \approx \left[e^{-\Delta \tau \hat{T}} e^{-\Delta \tau \hat{V}}\right]^{\Lambda}$ 

(iii) Hubbard-Stratonovich transformation



Wick theorem:

$$G = \frac{\sum M \det\{M\}}{\sum \det\{M\}}$$

Green function G in imaginary time (fermionic Grassmann variables  $\psi, \psi^*$ ):

$$G_{\sigma}(\tau_{2}-\tau_{1}) = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\psi^{*}] \psi_{\sigma}(\tau_{1})\psi_{\sigma}^{*}(\tau_{2}) \exp\left[\mathcal{A}_{0} - U\sum_{\sigma\sigma'}\int_{0}^{\beta} d\tau \psi_{\sigma}^{*}\psi_{\sigma}\psi_{\sigma'}^{*}\psi_{\sigma'}\right]$$

- (i) Imaginary-time discretization  $\beta = \Lambda \Delta \tau$
- (ii) Trotter decoupling  $e^{-\beta(\hat{T}+\hat{V})} \approx [e^{-\Delta \tau \hat{T}}e^{-\Delta \tau \hat{V}}]^{\Lambda}$
- (iii) Hubbard-Stratonovich transformation



(iv) MC importance sampling over auxiliary Ising field  $\{s\}$ :  $2^{\Lambda}$  configurations

+ numerically exact, + no sign problem, - effort scales as  $T^{-3}$ (density-type interactions)

HMS on Mathematical Physics (Salmhofer/Bach)  $\cdot$  2009/11/05  $\cdot$  Nils Blümer (Univ. Mainz, Germany)  $\lhd \quad \longleftrightarrow \quad \bigtriangleup \quad \vartriangleright$ 



#### Extrapolation $\Delta \tau \rightarrow \mathbf{0}$

can improve accuracy of observable estimates by several orders of magnitude ( $\sim$  same cost)



#### Extrapolation $\Delta \tau \rightarrow \mathbf{0}$

can improve accuracy of observable estimates by several orders of magnitude ( $\sim$  same cost)

Example: energy E for U = W = 4 (Bethe DOS), T = 1/45[NB, PRB (2007)]





#### Extrapolation $\Delta \tau \rightarrow \mathbf{0}$

can improve accuracy of observable estimates by several orders of magnitude ( $\sim$  same cost)

Example: energy E for U = W = 4 (Bethe DOS), T = 1/45[NB, PRB (2007)]



### New development: continuous-time QMC algorithms

weak-coupling expansion
[Rubtsov, Savkin, Lichtenstein, PRB (2005)]



2. hybridization expansion [Werner et al., PRL (2006)]



22

No systematic errors (in principle). Also more efficient than HF-QMC?

### New development: continuous-time QMC algorithms

weak-coupling expansion
[Rubtsov, Savkin, Lichtenstein, PRB (2005)]



2. hybridization expansion [Werner et al., PRL (2006)]



22

No systematic errors (in principle). Also more efficient than HF-QMC? No!



HF-QMC + extrapolation  $\Delta \tau \rightarrow 0$  can be more efficient [NB, PRB 76, 205120 (2007)]

## Multigrid Hirsch-Fye quantum Monte Carlo algorithm

State of the art: (a) conventional HF-QMC

(b) a posteriori extrapolation of selected observables



## Multigrid Hirsch-Fye quantum Monte Carlo algorithm

State of the art: (a) conventional HF-QMC

(b) a posteriori extrapolation of selected observables



(c) Multigrid HF-QMC: internal elimination of Trotter error
→ quasi continuous time algorithm [NB, arXiv:0801.1222]

#### Schematic comparison via generalized Ginzburg-Landau functionals



#### Schematic comparison via generalized Ginzburg-Landau functionals



Implementation: Green function extrapolation, hierarchy of frequency scales

Comparison: double occupancy  $D = \langle n_{i\uparrow} n_{i\downarrow} \rangle$  near Mott transition



Conventional HF-QMC: no insulating solution for  $\Delta \tau \gtrsim 0.4$ very irregular  $\Delta \tau$  dependence beyond  $\Delta \tau \approx 0.3$ 

Comparison: double occupancy  $D = \langle n_{i\uparrow} n_{i\downarrow} \rangle$  near Mott transition



Conventional HF-QMC:no insulating solution for  $\Delta \tau \gtrsim 0.4$ very irregular  $\Delta \tau$  dependence beyond  $\Delta \tau \approx 0.3$ Multigrid HF-QMC:vastly larger useful range of  $\Delta \tau$ 

25

 $\triangleright$ 

Systematic study: impact of grid range (on double occupancy)



Multigrid HF-QMC usually "numerically exact" for  $\tau_{min} \lesssim 0.3$ No "difficult observables" for multigrid HF-QMC, higher efficiency than CT-QMC Many successful applications: spectra, high-precision  $c_v$ , 8-band calculations, . . .

Ultracold atoms are much simpler:

Ultracold atoms are much simpler:



[Photo courtesy of U. Schneider]

 $\triangle$ 

 $\triangleright$ 

Ultracold atoms are much simpler: 1-band assumption is often accurate



[Photo courtesy of U. Schneider]

27

 $\triangleright$ 

Ultracold atoms are much simpler: 1-band assumption is often accurate



[Photo courtesy of U. Schneider]

### But: trapping potential → inhomogeneous systems finite cloud sizes



Ultracold atoms are much simpler: 1-band assumption is often accurate



[Photo courtesy of U. Schneider]

But: trapping potential → inhomogeneous systems finite cloud sizes



Note: more possibilities, e.g. 3-flavor systems

## Paramagnetic Mott transitions in 3-flavor mixtures

3 flavors: simplest case beyond electronic systems
1<sup>st</sup> approximation: all flavors equivalent

## Paramagnetic Mott transitions in 3-flavor mixtures



### • Qualitatively new physics: U < 0, n = 1.5 [Hofstetter, PRB (2004), PRL (2007)] Color superconductivity

Trionic phase

. . .
# Paramagnetic Mott transitions in 3-flavor mixtures



• Qualitatively new physics: U < 0, n = 1.5 [Hofstetter, PRB (2004), PRL (2007)] Color superconductivity

Trionic phase

• Ordered phases: U > 0, n = 1

. . .



# Paramagnetic Mott transitions in 3-flavor mixtures



• Qualitatively new physics: U < 0, n = 1.5 [Hofstetter, PRB (2004), PRL (2007)]

Color superconductivity Trionic phase

Ordered phases: U > 0, n = 1

. . .



### Most "electron-like": U > 0, paramagnetic phase

## Results at low T: particle density n and compressibility $\kappa = \frac{dn}{d\mu}$ (vs. $\mu$ )



HF-QMC, Bethe DOS (W = 4)

Plateaus at integer filling ( $U \gtrsim 5.5$ )  $\rightsquigarrow$  incompressible Mott phases

HMS on Mathematical Physics (Salmhofer/Bach) · 2009/11/05 · Nils Blümer (Univ. Mainz, Germany)

 $\triangleleft \leftrightarrow \bigtriangleup \vartriangleright 29$ 

## Results at low T: particle density n and compressibility $\kappa = \frac{dn}{d\mu}$ (vs. $\mu$ )



[E. Gorelik, N. Blümer, arXiv:0904.4610]

 $\triangleleft \leftrightarrow \bigtriangleup \vartriangleright 29$ 

HF-QMC, Bethe DOS (W = 4)

Plateaus at integer filling ( $U \gtrsim 5.5$ )

1 < n < 2: semi-compressible phase

→ incompressible Mott phases

 $\kappa$  independent of  $\mu$ , U, T





HMS on Mathematical Physics (Salmhofer/Bach) · 2009/11/05 · Nils Blümer (Univ. Mainz, Germany)

△ ▷ 29

 $\triangleleft$ 

T dependence of density n and compressibility  $\kappa$ 



 $\triangleleft \quad \longleftrightarrow \quad \bigtriangleup \quad \vartriangleright \quad 30$ 

T dependence of density n and compressibility  $\kappa$ 



Multigrid HF-QMC results (also HF-QMC at T = 1/20): Critical temperature  $T^* \approx 1/20$ Important for experiments: Signatures of Mott transition persist to high temperatures: nearly complete suppression of  $\kappa$  (at  $n \approx 1$ ) up to  $T \approx 1/5$ .

 $\triangleleft$ 

 $\leftrightarrow \bigtriangleup > 30$ 



3-spin/flavor system:

Pair occupancy vs. density



31

 $\triangleright$ 

### Local spectral function



 $\leftarrow \Delta \triangleright 32$ 

 $\triangleleft$ 

# Melting of an antiferromagnet in an optical trap

Now include trapping potential, e.g.:  $V_i = V r_i^2$ 

$$H = -\sum_{(ij),\sigma} t_{ij} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i=1}^{N} n_{i\uparrow} n_{i\downarrow} + \sum_{i,\sigma} V_i n_{i\sigma}$$

# Melting of an antiferromagnet in an optical trap

Now include trapping potential, e.g.: 
$$V_i = V r_i^2$$
  
 $H = -\sum_{(ij),\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i=1}^{N} n_{i\uparrow} n_{i\downarrow} + \sum_{i,\sigma} V_i n_{i\sigma}$ 

Real-space DMFT: use local self-energy in inhomogeneous system  $\rightsquigarrow N$  single-site impurities, coupled by modified lattice Dyson equation:

$$\left[G_{\sigma}(i\omega_{n})\right]_{ij}^{-1} = \left(\mu_{\sigma} + i\omega_{n}\right)\delta_{ij} - t_{ij} - \left(V_{i} + \sum_{i\sigma}(i\omega_{n})\right)\delta_{ij}$$

[M. Snoek, I. Titvinidze, C. Toke, K. Byczuk, and W. Hofstetter, New Journal of Physics (2008); R. Helmes, T. A. Costi, and A. Rosch, PRL (2008)]

Also: inhomogeneous DMFT (for Falicov-Kimball model) [Freericks]

## Melting of an antiferromagnet in an optical trap

Now include trapping potential, e.g.: 
$$V_i = V r_i^2$$
  
 $H = -\sum_{(ij),\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i=1}^{N} n_{i\uparrow} n_{i\downarrow} + \sum_{i,\sigma} V_i n_{i\sigma}$ 

Real-space DMFT: use local self-energy in inhomogeneous system  $\rightsquigarrow N$  single-site impurities, coupled by modified lattice Dyson equation:

$$\left[G_{\sigma}(i\omega_{n})\right]_{ij}^{-1} = \left(\mu_{\sigma} + i\omega_{n}\right)\delta_{ij} - t_{ij} - \left(V_{i} + \Sigma_{i\sigma}(i\omega_{n})\right)\delta_{ij}$$

[M. Snoek, I. Titvinidze, C. Toke, K. Byczuk, and W. Hofstetter, New Journal of Physics (2008); R. Helmes, T. A. Costi, and A. Rosch, PRL (2008)]

Also: inhomogeneous DMFT (for Falicov-Kimball model) [Freericks]

Note: impurity problem is site-parallel, lattice Dyson equation is frequency-parallel

All previous implementations: RDMFT+NRG

## NRG: problematic at elevated temperatures



Additional plateau/kinks at  $n_{\sigma} \approx 0.8$  for T = 0.15t [Rosch group, courtesy of U. Schneider]

However: experimental temperatures are high ~> advantage for QMC!

Real-space DMFT results for paramagnetic phase: QMC vs. NRG



Good agreement QMC  $\leftrightarrow$  NRG (after choosing same  $\mu$ )

[NRG data by I. Titvinidze (collaboration within SFB/TR 49)]

HMS on Mathematical Physics (Salmhofer/Bach) · 2009/11/05 · Nils Blümer (Univ. Mainz, Germany)

 $\lhd \quad \bigtriangleup \quad \hookrightarrow \quad \triangleright$ 

### Real-space DMFT results for AF phase: QMC vs. NRG



Finite-size effects surprisingly small; QMC apparently more accurate (even at low T)

## Melting of a central antiferromagnetic phase

Real-space DMFT-QMC results for 15x15 lattice at t=1, U=10, V=0.25, µ'=0



### Antiferromagnetic order signaled by enhanced double occupancy - entropy?

HMS on Mathematical Physics (Salmhofer/Bach) · 2009/11/05 · Nils Blümer (Univ. Mainz, Germany) ⊲ ↔

37

 $\triangle$ 

 $\triangleright$ 





Example: derivative of central density (at U = 10, V = 0.25) for various  $\mu$ 

Strong negative peak at Neel temperature (~> need fine integration grid)

HMS on Mathematical Physics (Salmhofer/Bach) · 2009/11/05 · Nils Blümer (Univ. Mainz, Germany)

 $\lhd \quad \hookrightarrow \quad \bigtriangleup \quad \vartriangleright$ 



very small discretization dependence

- △ ▷ 39

 $\triangleleft$ 

#### Real-space DMFT-QMC results for 15x15 lattice at t=1, U=10, V=0.25, µ'=0



40

 $\triangle$ 

 $\triangleright$ 

### Effect of filling on the antiferromagnetic phase

Real-space DMFT-QMC results for 15x15 lattice at t=1, U=10, V=0.25, T=0.1



### Buildup of metallic core $\rightarrow$ AF ring/shell

HMS on Mathematical Physics (Salmhofer/Bach) · 2009/11/05 · Nils Blümer (Univ. Mainz, Germany)

 $\triangleleft \leftrightarrow \bigtriangleup \vartriangleright$  41

### Effect of imbalance on the antiferromagnetic phase

Real-space DMFT-QMC results for 15x15 lattice at t=1, U=10, V=0.25, T=0.2



### AF survives strong imbalance (h = 0.3); h = 1 nearly fully polarized

HMS on Mathematical Physics (Salmhofer/Bach) · 2009/11/05 · Nils Blümer (Univ. Mainz, Germany)

 $\leftrightarrow \bigtriangleup \rhd$  42

 $\triangleleft$ 

RDMFT: strong proximity effects (not in local  $\mu$  approximation)



 $\leftrightarrow \bigtriangleup \rhd$  43

# Summary

Multigrid HF-QMC method: numerically exact (quasi CT) + efficient Mott transition for 3 degenerate flavors in  $(U, T, \mu)$  space Novel semi-compressible phase, spectra, small lattice effects Real-space DMFT Efficient and flexible RDMFT-QMC code Melting of an antiferromagnet, entropy, imbalance – LDA deficient

# Summary

Multigrid HF-QMC method: numerically exact (quasi CT) + efficient Mott transition for 3 degenerate flavors in  $(U, T, \mu)$  space Novel semi-compressible phase, spectra, small lattice effects Real-space DMFT Efficient and flexible RDMFT-QMC code

Melting of an antiferromagnet, entropy, imbalance – LDA deficient

# Outlook

3D calculations for realistic trap parameters and system sizes

Inequivalent spins/flavors: OSMT-like physics, ordered phases

Impact of higher Bloch bands

Spin-off: solids with large unit cells (distortions, surfaces, impurities, . . . )

Thanks to: Peter van Dongen Forschungsfonds 2007 and DFG (in SFB/TR 49)

Illustration: interpolation and extrapolation of Green functions



[NB, arXiv:0712.1290]

45

Excellent agreement with hybridization expansion CT-QMC [Werner et al., PRL (2006)]

HMS on Mathematical Physics (Salmhofer/Bach) · 2009/11/05 · Nils Blümer (Univ. Mainz, Germany) <



Uniform  $\Delta \tau$  dependence, position of max. error independent of  $\Delta \tau$  and phase!

### Entropy distribution

Real-space DMFT-QMC results for 15x15 lattice at t=1, U=10, V=0.25, µ'=0

N. Bluemer, E. Gorelik, 2009/10/29



47

 $\triangleleft$ 

 $\leftarrow$ 

 $\triangle$ 

 $\triangleright$ 

## **Benchmarks**



HF-QMC profits strongly from modern large-cache architectures

 $\leftrightarrow \bigtriangleup \rhd$  48

 $\triangleleft$ 



Very good scaling: speed roughly linear with number of CPU cores

### Superlinear scaling on JUMP



 $\triangle$ 

 $\triangleright$