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1

Introduction

Solid state theory aims at a description of intrinsic properties of solid materials by
finding and extracting information from suitable models. A good model is com-
plicated enough to capture interesting aspects of nature, but simple enough to be
solvable (at least within some limits or within controlled approximations) and to pro-
vide insights about the associated mechanisms. Even if it was possible to construct
a theory which exactly predicts all measurable properties of solids, more abstract
models would still be necessary in order to classify the different properties and the
different classes of physical systems and in order to identify which “ingredients” are
important for some particular effect. In this sense, the presence of free parameters
in model Hamiltonian approaches is not necessarily a shortcoming compared to ab
initio methods, but a very useful handle for understanding phenomena in a general
context. Often, different simplified models give reasonable descriptions for different
properties of the same material. For a more realistic description one can then build
up a hierarchy of more complex theories, thus broadening the range of validity and
improving on the accuracy of agreement to experiment. The main advantage of a mi-
croscopic model over a phenomenological theory is that its inherent approximations
are known so that it can, at least in principle, be made more realistic in a controlled
way.

Solids are constituted of a macroscopic number of positively charged atomic nuclei
and negatively charged electrons. In single crystals, the heavy nuclei can be assumed
to form a rigid periodic lattice. Furthermore, due to the strong Coulomb force, a
large fraction of the electrons is typically tightly bound in atomic-like shells around
the ions. The resulting core ions then provide a periodic background potential for
and shield the interaction between the remaining electrons. These valence electrons
determine, to leading order, the electronic, magnetic, and thermal properties of solids.
In this work, we will exclusively study the electronic system and mostly restrict our
treatment to the valence electrons.

Even in the limit of vanishing interaction between the (valence) electrons, their
dispersion is split by the lattice potential into an infinite number of energy bands
(Bloch, 1928). Due to the Pauli exclusion principle each eigenstate, characterized
by its momentum (within the Brillouin zone), band index, and spin, can only be
occupied by one electron. Consequently, there is some trivial correlation between
the electrons even at the noninteracting level. The (lattice-dependent) energy of
noninteracting electrons is commonly referred to as kinetic energy. It is the potential
energy associated with the (shielded) electron-electron Coulomb interaction which
introduces genuine correlations between the valence electrons and makes the problem
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interesting and complicated.

The low-energy electronic properties of some materials can be reasonably well
understood without explicitly taking electron-electron interactions into account. For
good metals, this surprising fact is elucidated by the phenomenological Landau Fermi-
liquid theory (Landau, 1957a; Landau, 1957b) which replaces electrons by noninter-
acting quasiparticles with a renormalized mass and a finite lifetime. Even when
the noninteracting picture fails, phenomena such as long-range order can some-
times be described within a static mean-field theory; here one replaces the effect
of the electron-electron interaction on each electron by that of a time averaged (and
possibly spin-dependent) electronic charge density. In general however, in partic-
ular for transition metal compounds, such effective single-particle pictures fail to
satisfactorily reproduce the interesting physical phenomena. These strongly cor-
related electron systems, for which the transition metal compounds are prototype
examples due to the strong (and locally essentially unshielded) Coulomb interac-
tion between their well-localized 3d and 4f valence orbitals, then call for theo-
ries which retain the full dynamics of the electronic correlation problem. Theo-
ries for such d and f systems typically take only few orbitals per lattice site into
account and assume an effectively short-ranged Coulomb interaction. An extreme
case is the Hubbard model where the Coulomb interaction is reduced to its on-site
part (Hubbard, 1963; Gutzwiller, 1963; Kanamori, 1963), i.e., where electrons only
interact with each other if they occupy the same lattice site (in the Wannier picture).

The Dynamical Mean-Field Theory (DMFT) is a nonperturbative approximation
for strongly correlated electron models, namely variants of the Hubbard model, which
becomes exact in the limit of infinite dimensionality or, equivalently, infinite lattice
coordination number (Metzner and Vollhardt, 1989). It neglects (short-range) spa-
tial correlations between the electrons while it retains their dynamical correlations
which are crucial for the description of many interesting phenomena observed in
correlated electron systems. The DMFT simplifies the lattice problem by mapping
it onto a single-impurity model embedded in a medium that has to be determined
self-consistently. Still, explicit solutions can only be obtained by application of ei-
ther further approximations or of numerical techniques. The quantum Monte Carlo
(QMC) method is numerically exact, i.e., its error can in principle be made arbi-
trarily small by increasing the numerical effort; even with today’s high-performance
computers the method is, however, restricted to not too low temperatures.

The low-temperature electronic properties of materials can be classified as insu-
lating, metallic, or superconducting depending on whether the resistivity increases
or decreases upon lowering the temperature or precisely vanishes (below some crit-
ical temperature), respectively. Changes in the resistivity and, in particular, phase
transitions from a metallic to an insulating state can be induced by, e.g., change
of stoichiometric composition, pressure, temperature, or magnetic field or by intro-
ducing disorder. In contrast to transitions to (possibly long-range ordered) band
insulators or those induced by Anderson localization which can be understood on
a noninteracting or static mean-field level, nonperturbative approaches are required
for a quantitative theory of the correlation-induced Mott metal-insulator transition
(MIT) which occurs at a point where potential and kinetic energy are of the same
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order.

The main focus of this work are studies of correlated electron systems near a Mott
metal-insulator transition. In particular, we will present the first controlled DMFT
calculation of the complete phase diagram of the fully frustrated single-band Hubbard
model with semi-elliptic density of states at half filling using the QMC method. We
will also perform the first calculations of the associated optical conductivity which
do not depend on the assumption of anisotropy or disorder; these will be based on
the general theory of densities of states and transport properties in high dimensions
which is also developed in this thesis. In addition to these pure model studies, we
will present results specific to the doped transition metal oxide La1-xSrxTiO3 which
are obtained using the hybrid LDA+DMFT technique. This new method employs
ab initio density functional theory in the local density approximation (LDA) for
defining a general multi-band Anderson-Hubbard model which is then treated within
the DMFT.

Structure of this Thesis

In chapter 1, we introduce the general electronic Hamiltonian and its reduction to
the Hubbard model. We characterize the DMFT and its relation with mean-field ap-
proximations to spin systems and present the DMFT mean-field equations as well as
their solution using the auxiliary-field QMC method. Finally, we discuss the analytic
continuation of imaginary-time Green functions to the real axis by the maximum
entropy method (MEM).

In chapter 2, we study the relations between lattice types, frustration, and densi-
ties of states (DOS). On the basis of Monte Carlo computations of momentum sums,
we also evaluate the convergence of the density of states to its infinite-dimensional
limit. We present new insights on the fractal tree commonly referred to as Bethe
lattice and on the impact of longer-range hopping for this model. We develop a new
formalism that allows to construct models with hypercubic symmetry which repro-
duce an arbitrary target DOS in the limit of infinite dimensionality (d =∞). Using
this approach, we can for the first time define a regular and translationally invariant
lattice with semi-elliptic DOS in d =∞.

In the central chapter 3, we thoroughly explore the low-temperature properties
of the fully frustrated Hubbard model with semi-elliptic DOS within the DMFT. We
determine the boundaries of a coexistence region of metallic and insulating solutions
with high accuracy, thereby resolving a controversy on the existence of a first-order
transition within this model. In the course of these studies, we detect and correct
deficiencies in previously used QMC schemes and develop an improved criterion for
the detection of phase transitions. Going beyond previous work, we also develop
a method for a reliable determination of the first-order transition line and perform
various tests of the accuracy of the result. Finally, we compute local MEM spectra
and suggest some methodological improvements to be used in future calculations.

Transport properties are discussed in chapter 4, where we carefully review the
formalism and its range of applicability and develop new expressions for the optical
f -sum rule which are valid in d = ∞. We show that the correct consideration of
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lattice properties is quantitatively important also in this limit and that simplifying
assumptions made in a previous study on the impact of frustration lead to large errors.
We point out the ambiguities associated with any DMFT calculation of transport
properties for “the Bethe lattice” and review the possible concepts for making the
problem well-defined; among these choices, the model defined in chapter 2 will be seen
to have the most desirable properties. We then present accurate numerical results for
the optical conductivity which are based on the MEM spectra computed in chapter 3.

In chapter 5, we give an introduction to the density functional theory and its lo-
cal density approximation and introduce the recently developed hybrid LDA+DMFT
scheme. We discuss the construction and simplification of the resulting multi-band
Hubbard model and its solution within the DMFT as well as the extraction of pho-
toemission and x-ray absorption spectra. In addition to numerical results obtained
in a collaboration with Anisimov’s group, we present new calculations and quantify
the QMC discretization error. We also apply the formalism developed in chapter 2
in order to derive a definition of the optical conductivity which is compatible with
the LDA DOS and present corresponding numerical results.

With the exception of the following introductory part, each chapter is supple-
mented by a conclusion. A brief overview over the results and new insights obtained
in this thesis is given in the Summary. Finally, some aspects not directly within the
main scope of this thesis are treated in the appendices.
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Chapter 1

Models and Methods

In this chapter we set the framework for the main part of this thesis by introducing the
models under investigation and the approximations and methods employed. Studies
of abstract models represent an idealized and focused view on physics which should
be complemented by a clear knowledge about the inherent limitations. Therefore,
we will emphasize those steps of abstraction from a “complete model” to the models
studied in this work which potentially cause properties of the resulting theory to
differ qualitatively from seemingly corresponding properties of real materials. Later,
we will make contact with these observations, e.g., in the discussion of the f -sum rule
of the optical conductivity (see chapter 4) and discuss a more complete picture in the
context of the LDA+DMFT method and its application to La1-xSrxTiO3 in chapter 5.
Since the density functional theory (DFT) and its local density approximation (LDA)
are not central to this work, these approaches are introduced directly in the context of
their application in chapter 5. As far as practical, methods like the quantum Monte
Carlo (QMC) algorithm or the maximum entropy method (MEM) are covered here on
a descriptive level while original methodological contributions are mainly discussed
in the following chapters.

In the following, we will first discuss the Hubbard model in a general context in
Sec. 1.1, then its nonperturbative treatment within the dynamical mean-field theory
(DMFT) in Sec. 1.2. We describe the quantum Monte Carlo method of solving the
DMFT self-consistency equations in Sec. 1.3 and the maximum entropy method of ob-
taining real-time dynamical information by analytic continuation of QMC imaginary-
time data in Sec. 1.4.

1.1 Hubbard Model

The one-band Hubbard model is the minimal lattice model for strongly correlated
electron systems, i.e., for describing electronic properties of materials which cannot
be treated without explicitly taking the Coulomb interaction between the (valence)
electrons into account. Typical examples are the transition metals and their com-
pounds. In subsections 1.1.1 – 1.1.4, we explore the microscopic foundation of the
Hubbard model and review some of its basic properties and limitations. Extensions
of the one-band Hubbard model which can potentially overcome some of these limi-
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tations are listed in App. A.1. While most of these extensions are beyond the scope
of this thesis, the multi-band model (A.5) will be central to chapter 5.

1.1.1 Solid State Theory for Crystals

The typical condensed matter system contains a macroscopic number (usually 1020

or more) of atomic nuclei and electrons.1 In this situation, a complete description of
a particular system for given initial conditions is not possible. In fact, it might not
be desirable since the truly interesting information would be hidden in an extensive
amount of details. It is the concept of statistical physics to abstract from some specific
system and view it as a realization of an ensemble of systems which share only some
important features like the atomic constitution exactly but are allowed to differ in
others. Among the observations that can be made for such ensembles are not only
those that pertain to each individual realization (like energy conservation), but also
others that involve averages over the ensemble, over time, and/or over space (like
density-density pair correlation functions).2 All results of this work will apply to the
thermodynamic limit of a (grand) canonical ensemble of unbounded systems with no
net charge.

Neglecting intra-nuclear effects and the gravitational, “weak”, and “strong” forces
(which are extremely small on typical condensed matter length scales of 10−10 m to 1
m), we assume that condensed matter systems are composed of inert pointlike atomic
nuclei and electrons which interact by the Coulomb 1/r potential (for a distance r)
and have no internal degrees of freedom other than (possibly) spin. Although, in
general, relativistic effects are important for the systems under consideration, they
often contribute only a constant energy offset to the solid-state problem (e.g., for core
states of heavy nuclei) or can be treated approximately in a nonrelativistic framework
(e.g., spin-orbit coupling for valence electrons; see App. A.1). Thus, the usual starting
point for condensed matter theory is nonrelativistic quantum statistical mechanics for
charged electrons and ions with the Hamiltonian3

H =
Ne∑

i=1

p2
i

2m
+

L∑

k=1

P 2
k

2Mk

+
∑

i<j

e2

|ri − rj|
+
∑

k<l

ZkZle
2

|Rk −Rl|
−
∑

i,k

Zke
2

|ri −Rk|
(1.1)

Here, ri (Rk), pi (P i), and m (Mk) label the positions, momenta, and masses of elec-
trons (ions), respectively; e is the electronic charge, Ne the total number of electrons,
L that of ions, and Zk the atomic number of the ion with index k. Charge neutrality
requires that Ne =

∑

k Zk. In the Gaussian system of units, 4πε0 = 1 drops out of
the expressions for the Coulomb energy.

1Exceptions to this rule are, e.g., mesoscopic systems where the physics may be dominated by
finite-size effects like in the single-electron transistor.

2Note that for ergodic systems, the infinite-length limit of the time average by definition agrees
with the ensemble average.

3The discussion of couplings to external electromagnetic fields is deferred to Sec. 4.2. We note
at this point, however, that the assumption of instantaneous Coulomb interaction used here and in
the following is exact within the Coulomb gauge.
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Since the long-range mobility of ions is vanishingly small in the solid state (except
for solid Helium), one can estimate the kinetic energy of the ions to be smaller than
that of the electrons by a factor of (m/Mk)

1/2 ≈ 10−2 − 10−3, which suggests using
m/M as a perturbation parameter where M is, e.g., the smallest ion mass in the
system. In the adiabatic approximation (Born and Oppenheimer, 1927) one treats the
electronic problem for fixed ion coordinates; feeding back the electronic eigenenergies
as a function of the ion coordinates then allows for an approximate treatment of the
ionic contribution which reduces the error to (m/M)3/4 (see, e.g., Czycholl, 2000).
We will take the zeroth-order approximation, i.e., use immobile ions on a periodic
lattice and view them as an external potential for the electrons. The effect of this
considerable simplification should be kept in mind when later interpreting results, in
particular with respect to transport properties.

1.1.2 Electronic Lattice Models

The resulting purely electronic Hamiltonian,

H =
Ne∑

i=1

p2
i

2m
+
∑

i

V (ri) +
∑

i<j

e2

|ri − rj|
, (1.2)

where the external potential V (r) = V (r + Rα) is periodic on the lattice (with
primitive lattice vectors Rα for α = 1, . . . , d, where d is the dimension), defines the
electronic lattice problem.

A full solution of this problem would have to include energy contributions (of
positive and negative sign) of at least the highest x-ray absorption edge of the con-
stituting atoms, which can be more than 6 orders of magnitude larger than energy
differences between, e.g., metallic and insulating phases considered in this work. In
this situation it is useful to distinguish between core electrons and valence electrons
where the former are assumed to be tightly bound to the nuclei. The resulting new
“elementary particles”, the core ions, then define a new, drastically weaker crystal
potential. Since core ions are polarizable they also modify the infinite-range 1/r
potential of the bare Coulomb electron-electron interaction to some shorter ranged
form.4 Provided that these effects can be quantified, we may restrict the treatment
to few valence electrons per lattice site,

H =
Nv∑

i=1

p2
i

2m
+

Nv∑

i=1

V ion(ri) +
Nv−1∑

i=1

Nv∑

j=i+1

V ee(ri, rj), (1.3)

where Nv is the number of valence electrons and V ion the shielded lattice potential.
Here, we have implicitly assumed an instantaneous effective interaction of the density-
density type which is certainly not exact. We also point out that the (screened)
effective interaction potential V ee between valence electrons is in general neither
homogeneous nor isotropic since the shielding charges are localized. Now switching

4Valence electrons can also take part in shielding the electron-electron interaction. This effect
should, however, not be built into a microscopic valence-electron model, but result from its solution.
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to the occupation number formalism (“second quantization”; see, e.g., Fetter and
Walecka, 1971) in real space, the Hamiltonian for electrons with spin σ takes the
form

Ĥ = Ĥ0 + Ĥint, (1.4)

where

Ĥ0 =
∑

σ

∫

dr ψ̂†
σ(r)

[

− ~
2

2m
∆ + V ion(r)

]

ψ̂σ(r) (1.5)

Ĥint =
1

2

∑

σσ

∫

dr

∫

dr ′ V ee(r, r′) n̂σ(r) n̂σ′(r′) . (1.6)

Here, ψ̂σ(r), ψ̂†
σ(r) are field operators which annihilate and create electrons of spin σ

at site r, respectively; ~ = h/2π is Planck’s constant, ∆ the Laplace operator, and
n̂σ(r) = ψ̂†

σ(r)ψ̂σ(r) the operator measuring the local density of electrons with spin
σ at position r.

1.1.3 Wannier Representation

In terms of the lattice momentum k and Bloch eigenfunctions φνk(r) of the non-
interacting5 Hamiltonian (1.5), we may introduce Wannier functions predominantly
localized at site Ri by

χiν(r) =
1√
L

∑

k

e−ik·Ri φkν(r) , (1.7)

where L is the number of lattice sites, and thus construct creation and annihilation
operators ĉ†iνσ,ĉiνσ for electrons with spin σ ∈ {↑, ↓} in the band ν at site Ri as

ĉ†iνσ =

∫

dr χiν(r) ψ̂†
σ(r) ←→ ψ̂†

σ(r) =
∑

iν

χ∗
iν(r)ĉ†iνσ . (1.8)

Using this basis, the Hamiltonian may be written in the lattice representation as
(Hubbard, 1963; Hubbard, 1964a)

Ĥ =
∑

iνjσ

tνij ĉ
†
iνσ ĉjνσ +

1

2

∑

νν′µµ′

∑

ijmn

∑

σσ′

Vνν′µµ′ijmn ĉ†iνσ ĉ
†
jν′σ′ ĉnµ′σ′ ĉmµσ , (1.9)

where the matrix elements are given by

tνij =

∫

dr χ∗
iν(r)

[

− ~
2

2m
∆ + V ion(r)

]

χjν(r) (1.10)

Vνν′µµ′ijmn =

∫

dr

∫

dr ′ V ee(r, r ′)χ∗
iν(r) χ∗

jν′(r
′) χnµ′(r

′) χmµ(r) . (1.11)

5In principle, we mean by “noninteracting” the absence of interaction between electrons. In
practice, however, it is often necessary to assume that at least a long-range Hartree part of the
interaction between the valence electrons is also included as a part of the kinetic energy and used
for the definition of the Wannier orbitals (Gebhard, 1997) which then better justifies a very short-
ranged form of the remaining explicit interaction. In any case, however, we want to assume that the
external potential need not be determined self-consistently (which might affect conclusions about
phenomena such as phase separation).
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Several observations can be made at this point: First of all, in contrast to the
field-operator representation defined in the continuum, in the Wannier representation
even the bare Coulomb interaction not only depends on the densities n̂iσ = ĉ†iσ ĉiσ but
also contains explicit off-diagonal contributions, for example, on-site Hund’s rule cou-
plings and Heisenberg nearest-neighbor exchange couplings (see App. A.1). Secondly,
when the explicit treatment is restricted to a few valence electrons, the interaction
V ee(r, r ′) cannot be expressed in the translationally invariant form V ee(r−r ′). This

affects symmetry considerations for the matrix elements Vνν′µµ′ijmn .6 Finally, the matrix
elements of the kinetic energy tνij, called hopping amplitudes, can be expected to fall
off rapidly with increasing |Ri −Rj| since the associated atomic orbitals and, con-
sequently, the corresponding Wannier functions hardly overlap, at least for 3d or 4f
valence electrons (see, e.g., Ashcroft and Mermin, 1976).

1.1.4 One-band Hubbard Model

The simplified valence-electron model (1.9) still contains an infinite number of input
parameters that cannot be reliably determined from first principles.7 This situation
calls for a minimalistic approach where the number of parameters is chosen to be just
large enough to capture the interesting effects, at least qualitatively.

If we restrict the Hamiltonian (1.9) to one valence band (ν = ν ′ = µ = µ′ =
1) with isotropic hopping to nearest neighbors (NN) only8 and assume “perfect”
screening, i.e., choose

tνij ≡ tij =

{
−t if i NN of j
0 otherwise,

(1.12)

Vνν′µµ′ijmn ≡ Vijmn = U δijδimδin , (1.13)

we arrive at the one-band Hubbard model,

ĤHub = −t
∑

〈i,j〉,σ

(

ĉ†iσ ĉjσ + h.c.
)

+ U
∑

i

n̂i↑n̂i↓ . (1.14)

Here, t parameterizes the kinetic energy, U the Coulomb interaction, and the bracket
〈i, j〉 restricts the sum to nearest-neighbor pairs i, j. The operator n̂iσ = ĉ†iσ ĉiσ mea-
sures the occupancy of the site i with electrons of spin σ. Consequently, n̂i↑n̂i↓ is
the double occupancy, i.e., its expectation value corresponds to the density of dou-
bly occupied sites. Studies of this model, originally proposed for the description of

6Formally, higher symmetry can be retained by applying (1.10) and (1.11) to the full unshielded
problem. A truncation of the inherent sums over nearest-neighbor shells, however, can only be
justified after the divergencies have been removed by renormalization, i.e., shielding.

7For an approximate material specific determination of matrix elements using density functional
theory, see Sec. 5.3.

8Since the methods introduced in the following do not rely on this restriction, we will later also
consider extended models with hopping beyond the NN shell. In this context, we refer to the model
with NN hopping only as the “pure” Hubbard model.
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itinerant ferromagnetism (Hubbard, 1963; Gutzwiller, 1963; Kanamori, 1963), have
become a major subfield of condensed matter theory. Since the hopping and inter-
action terms in (1.14) do not commute, they cannot be simultaneously diagonalized
which leaves the treatment of the Hubbard model highly nontrivial. In the (grand)
canonical ensemble, the model is fully specified by choosing t and U plus the under-
lying lattice, the temperature T , and the average band filling n := 1

L

∑L
i=1〈n̂i↑ + n̂i↓〉

(or, equivalently, the chemical potential µ).
For dimension9 d = 1, many properties of the Hubbard model such as the ground

state wave function, magnetic susceptibility, Drude weight, and excitation spectra
can be exactly calculated using the Bethe ansatz (Bethe, 1931; Lieb and Wu, 1968)
in the thermodynamic limit. For higher dimensions, little is known rigorously. The
generic low-temperature phase for half-filled (n = 1) bipartite lattices (for a definition,
see Sec. 2.1) and d ≥ 2 (only at T = 0 for d = 2) is antiferromagnetic (AF),
i.e., both sublattices have a finite (opposite) magnetization. This phase is found in
weak coupling (U → 0; qualitatively in Hartree-Fock, i.e., Slater mean-field theory)
and strong coupling (Anderson’s “super-exchange” mechanism) for d > 2 and can
also be approached by renormalization group methods, at least for d = 2 (Halboth
and Metzner, 2000; Honerkamp and Salmhofer, 2001). Ferromagnetism is rigorously
established in the pure Hubbard model only in the thermodynamically irrelevant case
of half filling minus one electron at U =∞ for a variety of lattice types (in dimensions
d ≥ 2; in one dimension it is excluded by the Lieb-Mattis theorem) and also for so-
called “flat band systems” (Mielke and Tasaki, 1993). For n = 1 and U → ∞, the
Hubbard model can be mapped to the spin-1/2 Heisenberg model for which a vast
literature exists; less is known about the t-J model to which the Hubbard model
is closely related for U → ∞ and n 6= 1. In d = 2, the Hubbard model is widely
used for modeling high-Tc superconductors. While the existence of long-range order
in the d-wave pairing is rigorously excluded (Mermin and Wagner, 1966; Su and
Suzuki, 1998) at finite temperatures for narrow-band models, instabilities towards
such order can still be inferred from corresponding correlation functions or from
calculations at T = 0. For a more comprehensive overview over the physics of the
Hubbard model see, e.g., the proceedings edited by Baeriswyl, Campbell, Carmelo,
Guinea, and Louis (1995).

The one-band Hubbard model represents a highly idealized view on strongly cor-
related materials. Its applicability to d or f electron systems is a priori questionable
since the partially filled bands correspond to atomic orbitals which are 5-fold and
7-fold degenerate (for each spin direction), respectively. While this degeneracy is
at least partially lifted by crystal field effects, a more realistic description can po-
tentially be achieved using multi-band versions of the Hubbard model, possibly also

9Note that for a lattice model with local Coulomb interaction, the dimensionality of the problem
is completely determined by the hopping matrix elements tij in (1.9). The physics of the problem is
of lower dimension d than the host lattice if the sublattice formed by all sites connected to one given
site via tij is topologically equivalent to a regular lattice of dimension d since then the Hamiltonian
factorizes into identical contributions from each of the unconnected sublattices. This fact explains
why even some (unisotropic) bulk systems in our three-dimensional world may be modeled as one-
dimensional or two-dimensional. Deviations from this idealized behavior arise both from residual
hopping matrix elements and from long-range Coulomb interactions.
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taking intersite interactions into account. Apart from just keeping additional terms
of (1.9), one may also choose a semi-effective approach including Kondo type interac-
tions, e.g., for modeling manganites. Compounds with several inequivalent ions per
unit cell may be modeled directly or by using orbitals on an effective Bravais lattice.
Further possible extensions which introduce qualitatively new physics [compared to
(1.14)] are disorder, phonons, and spin-orbit interaction. A more detailed discussion
(including Hamiltonians and references) can be found in App. A.1. While most of
the material provided there is intended to put our work into perspective, we will
analyze the implications of (off-diagonal) disorder for magnetic order, the density
of states, and transport properties in Sec. 2.2, chapter 3, and subsection 4.4.4 and
study a multi-band model in chapter 5. For the moment, however, we will concen-
trate on the (clean) one-band case for which we can achieve the high accuracy (in
the limit of infinite dimensionality, see below) needed for a reliable determination of
the low-temperature phase diagram in chapter 3.

1.2 Dynamical Mean-Field Theory

Even though the Hubbard model (1.14) is a drastically simplified model for strongly
correlated electron systems, very few exact statements can be made for lattice di-
mensions d > 1 (see above). Therefore, in general, additional approximations have
to be made. One particularly successful approximation for the Hubbard model and
its extensions is the Dynamical Mean-Field Theory (DMFT), also known as the limit
of infinite dimensions (Metzner and Vollhardt, 1989). In the following, we will first
characterize the DMFT in comparison to other approaches used in the literature
and discuss its unique advantages in the context of the paramagnetic metal-insulator
transition (MIT) studied in chapter 3. We will then, in turn, explore the implica-
tions of a large coordination number Z for spin models, noninteracting fermions, and
diagrammatic perturbation expansions for the Hubbard model and see that (for ap-
propriate scaling) the Hubbard model indeed remains nontrivial. It can be mapped
to a single impurity Anderson model (SIAM) plus a self-consistency condition in the
limit Z →∞. Possible extensions of the theory towards lower dimensions are referred
to App. A.1.

Approximate analytic methods are only reliable if they are controlled by a pa-
rameter which becomes small in some limit of the problem. Typical examples are
weak-coupling perturbation theories in U/t of first order, i.e., Hartree-Fock theory
(HF), a static mean-field approximation (Penn, 1966), or of second order (Georges and
Yedidia, 1991; van Dongen, 1994a). Further examples are strong-coupling expansions
in t/U (Harris and Lange, 1967; Takahashi, 1977; van Dongen, 1994b), and expan-
sions for high temperature or for low density n, i.e., the T -matrix approximation for
d ≥ 2 (Abrikosov and Khalatnikov, 1958; Galitskii, 1958; Landau, 1959; Engelbrecht,
Randeria, and Zhang, 1992).

The DMFT is a controlled approach in the above sense; its small parameter is the
inverse coordination number 1/Z. It is a conserving approximation which guarantees
thermodynamic consistency. Due to its nonperturbative character, the DMFT is
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not restricted to small or large values of U . Since the theory is formulated in the
thermodynamic limit, it yields continuous spectra and is per se free from finite-size
problems. The local dynamics of the correlation problem, i.e., on-site correlations,
are retained; only off-site short-range correlations are neglected. The mapping to a
SIAM implies a considerable reduction in technical complexity. Still, the resulting
problem is too complicated for a general analytic or computationally inexpensive
numerical solution.

For a description of the MIT in d = 3 (where 1/Z has a value, e.g., of 1/6, 1/8,
and 1/12 for the simple cubic, body centered cubic, and face centered cubic lattice,
respectively) the limit of large coordination number seems a reasonable starting point.
Only a nonperturbative method which keeps the local dynamical correlations can
reliably characterize the MIT, since this transition is intrinsically an intermediate-
coupling phenomenon (in contrast, e.g., to the transition to antiferromagnetic order
which can be understood both at weak and strong coupling within perturbation
theory). The thermodynamic limit is particularly important in the context of MITs
as finite systems are always insulators. Provided that short-range fluctuations do
not completely change the physics, we can hope to capture the essential correlation
physics within the DMFT, at least when the impurity part is solved numerically
exactly as in the QMC algorithm used throughout this work (see Sec. 1.3).

1.2.1 Limit Z → ∞ for Spin Models

It has been known for a long time that the results of the Weiss mean-field approx-
imation (Weiss, 1907) become exact for models with localized spins in the limit of
infinite coordination number Z →∞ (Brout, 1960).10 The Hamilton operator of the
isotropic spin-1/2 nearest-neighbor Heisenberg model reads

ĤHeisenberg = −J
∑

〈ij〉
Ŝi · Ŝj = −J

∑

〈ij〉

(

Ŝzi Ŝ
z
j +

1

2
(Ŝ+

i Ŝ
−
j + Ŝ−

i Ŝ
+
j )

)

, (1.15)

where the components of the spin operators obey the commutation rules [Ŝzi , Ŝ
±
j ]− =

±δijŜ±
i and [Ŝ+

i , Ŝ
−
j ]− = 2δijŜ

z
i . In order for the energy per lattice site to remain

finite when Z → ∞, one has to scale the exchange interaction as J = J ∗/Z, where
J∗ is independent of Z. Defining the average spin ĥi of the nearest neighbors (NN)
of lattice site i,

ĥi =
1

Z

∑

j NN of i

Ŝj , (1.16)

one finds that11 [ĥi, ĥj] = O(1/Z)(since only Z terms are nonvanishing) and that ĥi

commutes with the Hamiltonian (1.15) to leading order (see, e.g., Gebhard, 1997).

10Note that Brout does not explicitly make the connection from the limit of infinite coordination
number to the limit of infinite dimensionality but rather to the limit of infinite range of the exchange
interaction which he assumes to be approached in the physical high-density limit of spin systems.

11Here and in the following, O(xn) means “of the order of xn”, i.e., that the functional dependence
on x (in the limit x→ 0) does not contain terms with lower powers than n.
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Thus, the operators ĥi correspond to conserved quantities and may be replaced by
their expectation values. Choosing the z axis as the quantization axis, this procedure
is equivalent to an application of the Hartree decoupling scheme Ŝi ·Ŝj −→ Ŝzi Ŝ

z
j −→

〈Ŝzi 〉Ŝzj + Ŝzi 〈Ŝzj 〉 − 〈Ŝzi 〉〈Ŝzj 〉 to (1.15) which leads to the mean-field Hamiltonian

ĤMF = −2J∗
∑

i

Ŝzi hi + J∗
∑

i

〈Ŝzi 〉hi . (1.17)

The same form is obtained in the Z → ∞ limit of the Ising Hamiltonian ĤIsing =

−J
∑

〈ij〉 Ŝ
z
i Ŝ

z
j , the anisotropic limit of the Heisenberg model.

On the mean-field level, the thermodynamics of the ferromagnetic (J > 0) and
antiferromagnetic (J < 0) models are the same. However, for the quantum Heisen-
berg model in d = 3, ferromagnetic and antiferromagnetic order differ substantially
in character since the fully polarized antiferromagnet is not an eigenstate. The mean-
field critical temperature of TMF

c /J∗ = 0.5 can be compared to the numerically exact
Curie temperature of the ferromagnetic 3-d Heisenberg model where Tc/J

∗ = 0.28,
0.325, and 0.346 for simple cubic (sc), body centered cubic (bcc), and face centered
cubic (fcc) lattices, respectively (Kittel, 1996). For the Ising model, a thermodynam-
ically consistent approximation which also captures O(1/Z) corrections to the mean-
field theory is given by the so-called spherical model (Berlin and Kac, 1952) which
also applies to the Heisenberg model for T > Tc (Brout, 1960; Brout, 1961).12 An
application of this O(1/Z) theory to the 3-d ferromagnetic Heisenberg model yields
Tc/J

∗ = 0.37, 0.36, and 0.33 for sc, bcc, and fcc lattices, respectively (Brout, 1960).
Here, 1/Z corrections already greatly improve the mean-field estimates for Z ∼ 10.

1.2.2 Limit Z → ∞ for Fermions

In order to define a nontrivial Z → ∞ limit of the Hubbard model (1.14) one has
to scale its parameters so that the competition between kinetic and potential energy
is retained. Since U parameterizes the local interaction, it is independent of the
coordination number. The scaling (Metzner and Vollhardt, 1989)

t = t∗/
√
Z (1.18)

of the nearest neighbor (NN) hopping amplitudes ensures constant, finite variance of
its energy eigenvalue spectrum,

< ε2 >= t∗2 (1.19)

as derived for arbitrary (pseudo-) lattice type, dimension, and hopping range in sub-
section 2.2.2. A convenient class of lattices with arbitrarily high (even) coordination
number is formed by the hypercubic (hc) lattices which for dimension d (with Z = 2d)

12Among the pathologies encountered in earlier 1/Z expansions for spin models is a violation

of the sum rule
∑N

i=1(S
z
i )2 = N/4. An enforcement of this equality using a Lagrange parameter

leads to a reselection of diagrams of order 1/Z2. Only then one observes, e.g., a divergence of the
susceptibility for T → T+

c as required for a 2nd order phase transition (Brout, 1961).
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and unit lattice spacing have the dispersion

εk = −2t
d∑

l=1

cos(kl) . (1.20)

In the limit d→∞ and for generic k, this expression turns into an infinite sum over
statistically independent contributions to which the central limit theorem applies.
Consequently, the noninteracting density of states (DOS) acquires a Gaussian form,

ρhc(ε) =
1√

2π t∗
exp

(

− ε2

2t∗2

)

. (1.21)

One might be disturbed by the observation that this DOS is unbounded both at
low and high energies which makes the low-density limit n→ 0 unphysical since the
kinetic energy per electron diverges. This pathology is easily linked to the additive
independent energy contributions from each dimension to the total dispersion for
the hc lattice.13 In fact, an infinite number (of measure 0) of so-called nongeneric
momenta k with εk = ±∞ exists such as the center 0 := (0, 0, 0, . . . ) of the Brillouin
zone or the antiferromagnetic wave vector Q := (π, π, π, . . . ) (for lattice spacing
a = 1). For finite electron density n, however, all states with εk = −∞ (εk = ∞)
remain full (empty) at all finite temperatures and values of the interaction U and
thus essentially drop out of the problem. Also, the energy per lattice site remains
finite for arbitrary filling. An observation related to the appearance of infinite energy
contributions is that, for d → ∞, the 2-particle density of states with momentum
transfer q

Dq(ε1, ε2) :=
1

L

∑

k

δ(ε1 − εk+q)δ(ε2 − εk) (1.22)

only depends on q via a scalar η and reads (for hc DOS)

Dq(ε1, ε2) =
exp

(

− (ε1+ε2)2

4t∗2(1+ηq)

)

t∗
√

2π(1 + ηq)

exp
(

− (ε1−ε2)2

4t∗2(1−ηq)

)

t∗
√

2π(1− ηq)
, (1.23)

which implicitly defines ηq. Specifically, ηq = εq/(t
∗√2d) for the hc lattice. Evidently,

ηq vanishes generically (i.e., for all momenta with finite energy) and thusDq factorizes
for all generic q (Müller-Hartmann, 1989a; Müller-Hartmann, 1989b; van Dongen,
Gebhard, and Vollhardt, 1989)

Dq(ε1, ε2) = ρ(ε1) ρ(ε2) for generic q. (1.24)

Physically, it is important that some correlations remain in Dq(ε1, ε2) even in the
limit Z = ∞. There is necessarily always full correlation for q = 0: η(0) = 1.
Furthermore, perfect nesting implies η(Q) = −1 for any bipartite lattice.14

13We will explore alternative lattice types in chapter 2 and find that sharp band edges can be
obtained in the limit Z →∞ not only for the Bethe pseudo-lattice, but also for regular lattices (with
full momentum space). For the rest of this section, however, we focus on the more conventional hc
lattice.

14Note that the presence of extended hopping along the axes can destroy perfect nesting (Müller-
Hartmann, 1989a) without changing the DOS in d =∞; see subsection 2.1.3.
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Little is usually said in the literature about the distribution of nongeneric mo-
menta and the topology of Fermi surfaces in high dimensions. Even Gebhard’s (1997)
motivation for the random dispersion approximation (RDA, see below) which is based
on the generic factorization (1.24) of the 2-particle DOS is somewhat vague and
partially incorrect in this respect. In App. A.2, we attempt a more careful charac-
terization of generic and nongeneric momenta. While the modifications relative to
Gebhard’s view do not explain the discrepancy between RDA result and all recent
DMFT results for the MIT (see chapter 3), they shed more light on foundations of
the DMFT which will prove useful for our development of a generalized dispersion
formalism in Sec. 2.3.

1.2.3 Simplifications for the Hubbard Model in Z → ∞

Up to now we have concentrated on the noninteracting tight-binding part of the
Hubbard model Hamiltonian, since the local Coulomb interaction remains unscaled
for Z → ∞. We have seen that the dependence of the noninteracting 2-particle
DOS (1.22) on the momentum transfer q becomes essentially irrelevant in this limit
(i.e., for generic q). This observation can be generalized to higher order correlation
functions (see Sec. 4.3). The connection to the interacting problem is made by the
real-space diagrammatic perturbation expansion where properties of the full interact-
ing system such as its single-particle Green function Gij,σ are expressed in terms of
bare (noninteracting) Green functions G0

ij,σ and interactions. For the Hubbard model
with only local interactions, interaction lines reduce to local 4-leg vertices.15

Let us show by power counting that for Z = ∞ all pairs of vertices i and j
must coincide when they are connected by at least three independent lines: since
the hopping is scaled as t = t∗/

√
Z, each (direct) path made of fermion propagators

connecting i to j involves a factor of order Z−||i−j||/2. For fixed site i, we have at
most Z ||i−j|| choices for a “first” path connecting i to j or a topologically equivalent
site. In all regular lattices, this first path selects ||i − j|| directions. Since j is now
fixed, the freedom of choice for the second and additional paths connecting i and j is
generically reduced to a permutation of these directions which introduces additional
prefactors independent of Z. For a total of Pij independent paths the scaling factor16

is then O(Z ||i−j||(1−Pij/2)) and vanishes in high dimensions for Pij ≥ 3.17 Thus, the
proper self-energy becomes local for Z →∞,

Σij,σ(ω)
Z→∞−→ δijΣσ(ω), (1.25)

which can be directly used to eliminate one summation over lattice sites in the fol-

15NN interactions of the density-density type [cf. (A.7)] reduce to their Hartree contribution and
can, thus, be easily included in all computations (Müller-Hartmann, 1989a).

16Obviously, these considerations do not directly apply to the fully frustrated model with infinite
range hopping which has been studied numerically in the disordered case (Georges, Kotliar, and
Krauth, 1993) and been analytically solved in the clean case (van Dongen and Vollhardt, 1989).

17Note that this argument relies on the dimension being much larger than Pij and, ultimately,
larger than the order of the diagram. Conversely, a generalization to finite dimensions would have
to stop at finite-order perturbation theory (cf. footnote 5 on page 30).
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lowing general real-space Dyson equation (for a time-invariant system),

Gij,σ(ω) = G0
ij,σ(ω) +

∑

kl

G0
ik,σ(ω)Σkl,σ(ω)Glj,σ(ω) . (1.26)

This is also the defining equation for the proper self-energy.18 For translationally
invariant systems one can simplify this equation by Fourier transformation,

G−1
σ (k, ω) = (G0

σ(k, ω))−1 − Σ(k, ω); Σ(k, ω) ≡ Σ(ω) . (1.27)

Consequently, the local Green function can be expressed in terms of the noninteract-
ing DOS and the self-energy alone,

Gσ(ω) ≡ Gii,σ(ω) =
1

VB

∑

k

1

ω + µ− εk − Σσ(ω)
(1.28)

=

∞∫

−∞

dε
ρ(ε)

ω + µ− ε− Σσ(ω)
. (1.29)

An alternative derivation of the q-independence of the proper self-energy is based
on the observation that the Laue function δ∗(q) =

∑

K δ(q + K) (with reciprocal
lattice vectors K) becomes effectively momentum-independent when applied to the
internal vertices of a diagram (such as a vertex of the inserted proper self-energy).
Thus, the self-energy cannot depend on the external momentum and is consequently
momentum-independent (Müller-Hartmann, 1989a).

The absence of momentum dependence in the self-energy greatly simplifies the
treatment of the Hubbard model. One may, in fact, single out one of the lattice sites
and replace the influence of its neighbors by the interaction with a single, frequency-
dependent bath, i.e., map the Hubbard model onto a single impurity Anderson model
(SIAM) in the limit Z → ∞. In order to restore the periodicity of the original
lattice, this medium has to be determined self-consistently (Jarrell, 1992; Georges and
Kotliar, 1992; Janǐs and Vollhardt, 1992; Georges, Kotliar, Krauth, and Rozenberg,
1996). Written in terms of fermionic Matsubara frequencies19 ωn = (2n + 1)πT ,
self-energy Σσn ≡ Σσ(iωn), and Green function Gσn ≡ Gσ(iωn) the resulting coupled
equations read

Gσn =

∞∫

−∞

dε
ρ(ε)

iωn + µ− Σσn − ε
(1.30)

Gσn = −〈ψσnψ∗
σn〉A. (1.31)

18A self-energy is called proper if its external vertices cannot be be separated by cutting a single
Green function line which implies that they are connected by at least three such lines.

19We here chose an imaginary-time formulation for brevity and in anticipation of its use in the
context of the imaginary-time quantum Monte Carlo algorithm discussed in Sec. 1.3.
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−int. Dyson eq.k

Σ

G

G

impurity problem

G

Σ0

(1.30)

(1.35)

(1.31)

Figure 1.1: DMFT self-consistency cycle in conventional form: starting, e.g., with an
initial guess for self-energy Σ, the k integrated Dyson equation (1.30) yields the lattice
Green function G. Both Σ and G are used to compute the bath Green function G via (1.35)
which defines the impurity problem (1.31). Its solution using QMC (or IPT, NCA, ED,
NRG, etc.) provides a new estimate for G. The cycle is then closed by application of (1.35)
to the new G and the old Σ. For an alternative iteration scheme, see Sec. 3.2.

in the homogeneous phase. Here, properties of the lattice only enter via the DOS
ρ(ε) of the noninteracting electrons. The thermal average 〈Ĉ〉A of some observable
Ĉ is defined as a functional integral over Grassmann variables ψ, ψ∗,

〈Ĉ〉A =
1

Z

∫

D[ψ]D[ψ∗]C[ψ, ψ∗] eA[ψ,ψ∗,G], (1.32)

using the partition function

Z =

∫

D[ψ]D[ψ∗] eA[ψ,ψ∗,G] (1.33)

and the single-site action

A[ψ, ψ∗,G] =
∑

σ,n

ψ∗
σnG−1

σnψσn −
U

2

∑

σσ′

β∫

0

dτ ψ∗
σ(τ)ψσ(τ)ψ

∗
σ′(τ)ψσ′(τ) . (1.34)

Here, β = 1/kBT is the inverse temperature (in the following, we set kB ≡ 1) and

G−1
σn = G−1

σn + Σσn (1.35)

is the effective local propagator.20 Functions related by a Fourier transformation
(here from imaginary time τ to fermionic Matsubara frequencies ωn or vice versa)
are denoted by the same symbol, but can be distinguished by their indices.

The solution of the DMFT problem by iteration is illustrated in Fig. 1.1. Here,
the solution of the k–integrated Dyson equation (1.30) is straightforward and can

20Gσn may be regarded as a Weiss field in a (frequency-dependent) generalization of the usual static
mean field. In contrast with spin models, for which the Weiss field replaces all (NN) interactions,
the bath propagator replaces the hybridization of one site with the rest of the lattice.
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be performed analytically for the semi-elliptic Bethe DOS (see Sec. 2.2) used in
chapter 3. In contrast, the solution of the impurity problem (1.31) is highly non-
trivial.21 Most numerical methods developed for the treatment of SIAMs with fixed
bath could be adapted to the DMFT problem, e.g., solutions based on exact di-
agonalization (ED) (Caffarel and Krauth, 1994; Georges et al., 1996), the non-
crossing approximation (NCA) (Keiter and Kimball, 1970; Bickers, Cox, and Wilkins,
1987; Pruschke and Grewe, 1989; Pruschke, Cox, and Jarrell, 1993), the fluctuation-
exchange approximation (FLEX) (Bickers, Scalapino, and White, 1989; Bickers and
Scalapino, 1989; Bickers and White, 1991), the numerical renormalization group
(NRG) (Wilson, 1975; Krishna-murthy, Wilkins, and Wilson, 1980; Costi, Hewson,
and Zlatić, 1994; Bulla, 2000), and quantum Monte Carlo (QMC) algorithms. We
will introduce the QMC method in Sec. 1.3 and use it throughout the numerical
parts of this work; we will later also compare to results obtained from the other
methods mentioned above as well as from iterated perturbation theory (IPT), which
for half-filling (n = 1) is based on the following second-order approximation for the
self-energy (Georges and Kotliar, 1992),

ΣIPT
σn =

U

2
+ U 2

β∫

0

dτ eiωnτ
(
G̃σ(τ)

)3
; G̃σ(τ) = Gσ(τ)−

U

2
(1.36)

and becomes exact both at weak and strong coupling (Zhang, Rozenberg, and Kotliar,
1993).

While the DMFT is a very successful theory for correlated electron systems due to
its nonperturbative character, it misses some important physics even in three dimen-
sions and may fail completely for two dimensional systems. In particular, phenom-
ena which involve strong momentum dependence such as d-wave superconductivity
cannot be described within the DMFT. Attempts to build up a more widely ap-
plicable theory by systematically including O(1/Z) corrections have failed so far to
produce breakthroughs for finite-dimensional systems (Gebhard, 1990; Vlaming and
Vollhardt, 1992; van Dongen, 1994c; Schiller and Ingersent, 1995; Pruschke, Metzner,
and Vollhardt, 2001).22 However, significant progress has been made recently using
schemes which interpolate between the DMFT single impurity problem and finite-
dimensional clusters (with periodic boundary conditions). These fascinating exten-
sions of the DMFT, namely the DCA and the CDMFT are reviewed in App. A.3,
together with the RDA which was constructed as an alternative to the DMFT self-
consistency approach.

21An exception is the application of (1.30) and (1.31) to a Lorentzian DOS ρ(ε) = t/(π(ε2 + t2))
which can be realized on lattices with long range hopping (Georges and Kotliar, 1992). For this
DOS (which is clearly pathological due to its infinite variance), the Weiss function is independent
of U ; furthermore (1.31) is solvable by Bethe ansatz in this case so that many properties can be
obtained analytically.

22Recently, an improved version of the Schiller-Ingersent scheme was applied for the hypercubic
lattice using the FLEX approximation. Although no violation of causality was observed in this case,
the causality of the method in general is still unclear (Zaránd, Cox, and Schiller, 2000).
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1.3 Quantum Monte Carlo Algorithm

In this section, we will discuss the auxiliary-field quantum Monte Carlo (QMC) al-
gorithm used in this work for solving the impurity model (1.31). It was originally
formulated for treating a small number of magnetic impurities in metals (Hirsch and
Fye, 1986) and later applied to arbitrary hybridization functions, i.e., in the form re-
quired for the solution of the DMFT problem (Jarrell, 1992; Rozenberg, Zhang, and
Kotliar, 1992; Georges and Krauth, 1992; Ulmke, Janǐs, and Vollhardt, 1995). Before
we discuss technical details, let us point out some general important consequences of
using this particular method for solving the impurity problem: First of all, the QMC
method is formulated in imaginary time, i.e., G(τ) is evaluated (as a functional of
G(τ) and the model parameters) which implies that dynamical information can be
obtained directly only for imaginary Matsubara frequencies and that analytic con-
tinuation is required for getting information, e.g., the spectrum, at real frequencies
(see Sec. 1.4). A second implication is that Fourier transforms are necessary in order
to connect the imaginary-time impurity part with the Dyson equations (1.30) and
(1.35) which are diagonal in frequency space. Finally, the QMC method introduces
a discretization ∆τ of the imaginary time β which not only necessitates an extra-
polation of all DMFT(QMC) results to the physical limit ∆τ → 0 (using converged
DMFT solutions for different values of ∆τ) and restricts the method to relatively
high temperatures, but also complicates the Fourier transformations. Here, we will
concentrate on the solution of the impurity problem and discuss problems related to
the Fourier transforms in Sec. 3.4. We also specialize to the single-band homogeneous
case; for the generalization to the multi-band cases used in chapter 5, we refer to the
literature (Rozenberg, 1997; Han, Jarrell, and Cox, 1998; Held and Vollhardt, 1998).

1.3.1 Wick’s Theorem for the Discretized Impurity Problem

The difficulty in solving the functional integral equation (1.31) arises from the non-
commutativity of the kinetic term and the interaction term in the single-site ac-
tion (1.34). These terms can be separated by use of the Trotter-Suzuki formula
(Trotter, 1959; Suzuki, 1976) for operators Â and B̂:

e−β(Â+B̂) =
(
e−∆τÂ e−∆τB̂

)Λ
+O(∆τ) , (1.37)

where ∆τ = β/Λ and Λ is the number of (imaginary) time slices.23 Rewriting the
action (1.34) in discretized form

AΛ[ψ, ψ∗,G, U ] = (∆τ)2
∑

σ

Λ−1∑

l,l′=0

ψ∗
σl(G

−1
σ )ll′ ψσl′

−∆τU
Λ−1∑

l=0

ψ∗
↑l ψ↑l ψ

∗
↓l ψ↓l, (1.38)

23Since β = 1/kBT is the inverse temperature, small ∆τ on each “time slice” corresponds to a
higher temperature, for which the operators effectively decouple. Thus, we may view the Trotter
approach as a numerical extension of a high-temperature expansion to lower temperatures.
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where the matrix Gσ consists of elements Gσll′ ≡ Gσ(l∆τ − l′∆τ), we apply (1.37)
and obtain to lowest order

exp (AΛ[ψ, ψ∗,G, U ]) =
Λ−1∏

l=0

[

exp
(

(∆τ)2
∑

σ

Λ−1∑

l′=0

ψ∗
σl(G

−1
σ )ll′ ψσl′

)

× exp
(
−∆τ U ψ∗

↑l ψ↑l ψ
∗
↓l ψ↓l

)
]

. (1.39)

Shifting the chemical potential by U/2, the four-fermion term can be rewritten as
a square of two-fermion terms, which makes it suitable for the following discrete
Hubbard-Stratonovich transformation (Hirsch, 1983):

exp

(
∆τU

2
(ψ∗

↑l ψ↑l − ψ∗
↓l ψ↓l)

2

)

=
1

2

∑

sl =±1

exp
(
λsl(ψ

∗
↑l ψ↑l − ψ∗

↓l ψ↓l)
)

(1.40)

with coshλ = exp(∆τU/2). Here, the interaction between electrons is replaced by
the interaction with an auxiliary binary field {s} with components sl for 0 ≤ l ≤ Λ.
Acting like a local, but time-dependent magnetic field, {s} can be regarded as an
ensemble of Ising spins.

These transformations yield an expression for the functional integral

Gσl1l2 =
1

Z
∑

{s}

∫

D[ψ]D[ψ∗] ψ∗
σl1
ψσl2 exp

(∑

σ,l,l′

ψ∗
σlM

sl

σll′ψσl′
)

, (1.41)

with24

M sl

σll′ = (∆τ)2(G−1
σ )ll′ − λσδll′sl, (1.42)

where in (1.41) the sum is taken over all configurations of the Ising spin field, and
each term of the sum involves independent fermions only. Now Wick’s theorem (see,
e.g., Negele and Orland, 1987) can be applied to get the solution

Gσll′ =
1

Z
∑

{s}

(
M {s}

σ

)−1

ll′
det M

{s}
↑ det M

{s}
↓ , (1.43)

where M
{s}
σ is the matrix with elements M sl

σll′ , and the partition function has the
value

Z =
∑

{s}
det M

{s}
↑ det M

{s}
↓ . (1.44)

Computing one of the 2Λ terms in (1.43) directly from definition (1.42) is an operation
of order O(Λ3). If the terms are ordered in a way so that successive configurations {s}
and {s}′ only differ by one flipped spin sl → −sl then all matrices and determinants
can be updated at a cost of O(Λ2) (Blankenbecler, Scalapino, and Sugar, 1981). Only
for Λ . 24 can all terms be summed up exactly. Computations at larger Λ are made
possible by Monte Carlo importance sampling which reduces the number of terms
that have to be calculated explicitly from 2Λ to order O(Λ).

24A more precise form including subleading corrections is M sl

σll′ = (∆τ)2 (G−1
σ )ll′ eλσsl′ + δll′

(
1−

eλσsl
)

(Held, 1999; Georges et al., 1996).
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1.3.2 Monte Carlo Importance Sampling

Monte Carlo (MC) procedures in general are stochastic methods for estimating large
sums (or high-dimensional integrals) by picking out a comparatively small number
of terms (or evaluating the integrand only for a relatively small number of points).
Let us assume we want to compute the average X := 1

M

∑M
l=1 xl, where l is an index

(e.g., an Ising configuration l ≡ {s}) and x some observable with the (true) variance
vx = 1

M

∑M
l=1(xl−X)2. In a simple MC approach (as used, e.g., for the computation

of densities of states in chapter 2), one may select a subset of N ¿ M indices
independently with a uniform random distribution P (lj) = const. (for 1 ≤ j ≤ N),

(
XMC

)2
=

1

N

N∑

j=1

xlj (1.45)

∆XMC := 〈(XMC −X)2〉 =
vx
N
≈ 1

N(N − 1)

N∑

j=1

(xlj −XMC)2 . (1.46)

Here, the averages are taken over all realizations of the random experiment (each
consisting of a selection of N indices). In the limit of N → ∞, the distribution of
XMC becomes Gaussian according to the central limit theorem. Only in this limit is
the estimate of vx from the QMC data reliable.

Smaller errors and faster convergence to a Gaussian distribution for the estimate
may be obtained by importance sampling. Here, the function xl is split up,

xl = pl ol; pl ≥ 0;
M∑

l=1

pl = c , (1.47)

where we may regard pl as a (unnormalized) probability distribution for the indices
and ol as a remaining observable. If both the normalization c is known (i.e, the
sum over the weights pl can be performed exactly) and the corresponding probability
distribution can be realized (by drawing indices l with probability P (l) = pl/c), we
obtain

XMC
imp =

c

N

N∑

j=1

olj and ∆XMC
imp = c

√
vo
N
. (1.48)

Thus, the error can be reduced (vo < c2vx), when the problem is partially solvable, i.e.,
the sum over pl with pl ≈ xl can be computed.25 Since this is not possible in general,
one usually has to treat the normalization c as an unknown and realize the probability
distribution P (lj) = plj/c in a stochastic Markov process: Starting with some initial
configuration l1, a chain of configurations is built up where in each step only a small
subset of configurations l′ is accessible in a “transition” from configuration l. Provided
that the transition rules satisfy the detailed balance principle,

pl P(l → l′) = pl′ P(l′ → l) , (1.49)

25The possible reduction of the variance is limited when xl is of varying sign. This “minus-sign
problem” seriously restricts the applicability of Monte Carlo methods for finite-dimensional fermion
problems.
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and the process is ergodic (i.e., all configurations can be reached from some starting
configuration), the distribution of configurations of the chain approaches the target
distribution in the limit of infinite chain length. Since the normalization remains
unknown, importance sampling by a Markov process can only yield ratios of different
observables evaluated on the same chain of configurations. Another consequence
of using a Markov process is that initial configurations have to be excluded from
averages since the true associated probabilities might be vanishingly small. They
would otherwise be overrepresented in any run of finite length. Consequently, we will
later distinguish “warmup sweeps” from “measurement sweeps”.

For the computation of errors, one has to take into account the finite autocor-
relation induced by the Markov process, i.e., correlation between subsequent mea-
surements. This correlaton may be characterized by the autocorrelation time26

κo ≥ 1 which effectively reduces the number of independent samples, so that ∆X =
c
√

voκo/N . The numerical effort necessary to reach some target statistical accuracy
∆X nevertheless increases only as (1/∆X)2.

Returning to the evaluation of the Green function using (1.43) and (1.44), the
obvious choice is to sample configurations {s} according to the (unnormalized) prob-
ability

P ({s}) =
∣
∣
∣ det M

{s}
↑ det M

{s}
↓

∣
∣
∣ . (1.50)

The Green function can then be calculated as an average 〈. . . 〉s over these configu-
rations:

Gσll′ =
1

Z̃

〈(
M {s}

σ

)−1

ll′
sign

(

det M
{s}
↑ det M

{s}
↓

)〉

s
, (1.51)

Z̃ =
〈

sign
(

det M
{s}
↑ det M

{s}
↓

)〉

s
. (1.52)

Here, Z̃ deviates from the full partition function by an unknown prefactor which
cancels in (1.51). The inability to compute the partition function is a consequence of
the importance sampling and is thus a general characteristic of QMC methods. This
will have severe consequences for the study of phase transitions (see chapter 3).

In this work, the transition probability is chosen according to the Metropolis
transition rule (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller, 1953)27

P(x→ y) = min{1, P (y)/P (z)} (1.53)

for transitions from a spin configuration x to a configuration y, which clearly fulfills
detailed balance (1.49). Configuration updates are always performed by sweeping

26For a set {o1, o2, . . . , oN} of measurements, the autocorrelation function (for the observable
o) is col = 〈(ok − 〈o〉)(ok+l − 〈o〉)〉k. An associated autocorrelation time may then be defined as

κo = co0 + 2
∑N0

l=1 c
o
l , where the cutoff N0 is determined by col > 0 for l ≤ N0 and cN0+1 < 0.

27Since in the present problem most of the computational cost is associated with the spin update
and only has to be paid for accepted spin flips, the Metropolis rule, which has the highest acceptance
ratio compatible with detailed balance, might not be optimal. Our tests with the symmetric heat-
bath rule and generalizations of it which further suppress transitions between states with similar
probability did not, however, lead to significant saving of computer time at constant accuracy.
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through the full spin field, i.e., by attempting to flip spins s0 through sΛ−1 one after
the other and then starting the next sweep. Roughly, the number of such sweeps
has to be held constant (rather than the number of attempted single-spin flips) for
constant statistical error when the number of spins Λ is varied. Since the systematic
error depends on ∆τ , the necessary number of time slices is proportional to the
inverse temperature, Λ ∝ β, so that the total numerical cost for given accuracy is
proportional to β3.

In this work, up to Λ = 400 time slices and up to 107 measurement sweeps were
used. A single iteration for Λ = 400 with 200000 sweeps took more than 7 CPU
hours on a Cray T90. Since typically 10-20 iterations are needed for well-converged
solutions (even when initializing the runs with data obtained for larger ∆τ), the
computation of each such data point took several weeks of real time and used up
about a monthly contingent of supercomputer time. No minus-sign problem was
encountered, i.e., the sign in (1.51) and (1.52) was always positive.

1.4 Maximum Entropy Method

Within the DMFT, all single-particle properties can be expressed in terms of the local
single-particle spectral function (also called “full” or “interacting” density of states)
which is proportional to the imaginary part of the local retarded Green function,

A(ω) = − 1

π
ImG(ω + i0+) . (1.54)

The spectral function A(ω) is accessible experimentally: measured (angular aver-
aged) photoemission spectra (PES) can under certain simplifying assumptions (see
subsection 5.4.1) be identified with A(ω) multiplied by the Fermi function nf(ω−µ).
Correspondingly, inverse photoemission spectra or X-ray absorption spectra (XAS)
can be identified with A(ω) multiplied by 1−nf(ω−µ). Furthermore, nonlocal spec-
tral functions and the optical conductivity σ(ω) can, within the DMFT, be calculated
from A(ω) (see chapter 4).

In QMC calculations, however, the Green function G (and thus the spectral func-
tion A(ω)) cannot be directly computed on the real axis. Instead, real-time dynami-
cal information has to be extracted from imaginary-time data G(τ) (or, equivalently,
from the Fourier transformed Matsubara-frequency data G(iωn)) via analytic contin-
uation. This is in principle possible through inversion of the spectral representation
for G(τ), i.e.,

G(τ) =

∞∫

−∞

dω K(τ, ω − µ; β) A(ω) , (1.55)

K(τ, ω; β) :=
exp(−τω)

1 + exp(−βω)
, (1.56)

but poses an ill-conditioned problem since G(τ) is only measured on a grid τl = l∆τ
(where ∆τ = β/Λ) and since the kernel (1.56) becomes exponentially small for generic
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Figure 1.2: General fermion kernel (1.56) for an equidistant set of values of τ/β ≤ 1/2.
Except for τ = 0, large frequencies are suppressed exponentially. Inset: symmetrized
fermion kernel (1.57).

values of τ at large absolute frequencies |ω| as illustrated in Fig. 1.2. For a symmetric
problem, i.e., symmetric noninteracting DOS and n = 1, the integral in (1.55) can
be restricted to positive frequencies when the symmetrized fermion kernel

Ks(τ, ω; β) = K(τ, ω; β) +K(τ,−ω; β) (1.57)

shown in the inset of Fig. 1.2 is used. We stress that a very small number Λ = O(10)
of time slices poses a more serious limitation for obtaining reliable spectra with good
resolution than the exponential nature of the kernel since the number of degrees of
freedom which can be reliably resolved in a spectrum is obviously much smaller than
the number of data points {G(l∆τ)} and since there always exists an infinite number
of spectra which correspond to the same data. Still, in general, the resolution is
much better at smaller frequencies and, according to Nyquist’s theorem, essentially
no information can be obtained from QMC for ω > Λπ/β = π/(∆τ). Before we
address the full analytic continuation problem and introduce the maximum entropy
method, we collect some useful relations (denoting the mth derivative as G(m)),

G(β) = n, G(0+) = 1− n, (1.58)

G(m)(0) +G(m)(β) = (−1)m〈(ω − µ)m〉A(ω) (1.59)

G(β/2) ≈ π

β
A(ω)

∣
∣
|ω−µ|.π/β . (1.60)

Since the filling given by (1.58) is known in the symmetric case, the value of G(0) then
provides no useful information which is also seen in the inset of Fig. 1.2. Equation
(1.59) also shows the loss of high-frequency information from the discretization of
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imaginary time: for a finite grid the error in estimating derivatives G(m) increases
rapidly with order m; thus, the determination of high order moments 〈(ω− µ)m〉A(ω)

of the spectrum is in general an ill-posed problem. At low temperatures, G(β/2)
gives a hint as to the weight of a quasiparticle peak or the existence of a gap via
(1.60) since its value is proportional to the value of the spectral function near the
Fermi energy, averaged over an inverse hyperbolic cosine with width π/β.

First attempts to address the analytic continuation problem for QMC data in-
cluded least-squares fits, Padé approximants, and regularization (for references, see
the pedagogical and concise review by Jarrell (1997)). Least-squares fits of spectra
approximated as a set of box functions are inherently unstable. Padé approximations
for G(iωn) only work well for very precise data (e.g., in the context of Eliashberg
equations), but not for QMC. Regularization of the kernel (1.56) tends to produce
overly smeared-out spectra. What is needed instead is a regularization of the solution
A(ω) that only shows features which are supported by the data, but is as smooth
as possible otherwise. This is essentially the idea of the maximum entropy method
(MEM) of finding the most probable spectrum compatible with the data.

The MEM is a very general approach for reconstructing continuous, positive
semidefinite functions (i.e., densities or spectra) from incomplete, noisy, and pos-
sibly oversampled28 data. It has a long history in the context of image reconstruction
in such diverse disciplines as radio aperture synthesis, optical deconvolution, X-ray
imaging, structural molecular biology, and medical tomography (see Skilling and
Bryan (1984) and references therein). A preliminary study of its usefulness in the
context of the analytic continuation problem (Silver, Sivia, and Gubernatis, 1990)
was soon followed by applications to spectra (Silver, Gubernatis, Sivia, and Jar-
rell, 1990; Jarrell, Sivia, and Patton, 1990) and correlation functions (Deisz, Jarrell,
and Cox, 1990). An efficient and general formulation of a MEM algorithm for analytic
continuation of (oversampled) QMC data was then given by Gubernatis, Jarrell, Sil-
ver, and Sivia (1991), closely following the general state-of-the-art approach by Bryan
(1990).

For simplicity, we will first assume that the QMC simulation produces Nd mea-
surements of the observables Gl ≡ G(l∆τ), 0 ≤ l < Λ which are independent both
in computer time and in imaginary time, i.e., without significant autocorrelation
between subsequent measurements or between adjacent imaginary time slices.29 If
we further disregard systematic errors and assume some “true” spectrum A [which
corresponds to a discretized Green function Gl via (1.55)] as well as a Gaussian dis-
tribution of statistical errors, the probability distribution for the observed averaged

28Data is called oversampled when measurements of different data points (here: for different τ)
are not statistically independent, but correlated (Bryan, 1990). In this case, the number of “good”
degrees of freedom (entering the error statistics) is reduced.

29Typically, one of the “measurements” of a set {Gl} is generated by binning a macroscopic
number of measurements within QMC. Autocorrelation in computer time, i.e., between different
bins vanishes in the limit of infinite bin size.
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values Ḡ ≡ {Ḡl} (where Ḡl =
∑Nd

i=1G
i
l) is

P (Ḡ|A) ∝ e−
1
2
χ2

; χ2 =
Λ−1∑

l=0

(
Ḡl −Gl

)2

σ2
l

. (1.61)

Here, σl can be estimated from the data alone, σ2
l ≈

∑Nd

i=1

(
Ḡl − Ḡi

l

)2
/(Nd(Nd− 1)).

Obviously, the likelihood function P (Ḡ|A) is not directly helpful; in order to find the
most probable spectrum given the measured data, we need the converse probability
P (A|Ḡ). These probabilities are related by Bayes’ theorem,

P (A|Ḡ)P (Ḡ) = P (Ḡ|A)P (A) . (1.62)

Since the data Ḡ is constant in the search for an optimal A, the associated proba-
bility P (Ḡ) drops out of the problem. For the probability P (A) of a spectrum A(ω)
in absence of data, an entropic ansatz is made where prior knowledge can also be
incorporated by choosing an appropriate (positive semidefinite) default model m(ω),

P (A) = eαS[A(ω),m(ω)] . (1.63)

Here, α is a numerical parameter while S is a generalized Shannon-Jaynes entropy,

S[A,m] =

∫

dω
(

A(ω)−m(ω)− A(ω) ln
(
A(ω)/m(ω)

))

. (1.64)

For a constant default model (within some finite frequency range), the entropic form
(1.64) clearly favors smooth spectra. This is also true for a general smooth default
model. It also enforces positivity of A and pushes the solution towards the (normal-
ized) default model in absence of data. From (1.61), (1.62), and (1.63), the posterior
probability can be read off as

P (A|Ḡ,m, α) = eαS[A,m]− 1
2
χ2[Ḡ,A] . (1.65)

The balance between a tight match of data and a high entropy is calibrated by
the Lagrange parameter α which may be chosen so that χ2 = Λ (historic MEM).
Alternatively, one may use the value of α with the highest probability P (α|Ḡ, A,m)
which can approximately be calculated within the method (classic MEM). Given
the QMC data, a default model, a representation of the spectrum (i.e., a possibly
inhomogeneous grid of ωj of frequencies for which A is going to be computed), and
a starting guess for α, a simple MEM program thus both searches for the spectrum
{A(ωj)} with maximum probability P (A|Ḡ,m, α) for given α using, e.g., the Newton-
Raphson method and, in an outer loop, searches for the best value of α.

More advanced aspects of the MEM, in particular the breakdown of some as-
sumptions made above and improved formulations are discussed in the context of the
analytic continuation of Green functions for correlated systems in subsection 3.8.1.
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Chapter 2

Lattice and Density of States

Within the DMFT, properties of the lattice enter the computation of single-particle
properties via the “noninteracting” density of states (DOS) ρ(ε) only.1 Thus, in
addition to the Hubbard interaction U , the temperature T , and the density n, the
DOS constitutes an infinite set of input parameters for the DMFT treatment of
the Hubbard model. While some aspects of a given DOS are easily characterized
(with, e.g., the variance setting the energy scale for U and T ), many of its degrees of
freedom may influence physical properties of the interacting system in a complicated
way. More generally, the choice of hopping matrix elements or, equivalently, the
choice of a dispersion εk may be crucial for properties of Hubbard type models in any
dimension. In most studies of the Hubbard model in dimensions d > 1, the hopping
range has been restricted to nearest neighbors (NN) and, in some cases, next-nearest
neighbors (NNN). While using only these largest hopping matrix elements is certainly
a reasonable starting point, the remaining part can still be qualitatively important,
in particular in high dimensions.

Three related problems motivate the studies presented in this chapter. First,
up to now there has been no fully satisfactory way of treating the Hubbard model
rigorously in d = ∞. As shown in Sec. 1.2, NN hopping on the hypercubic (hc)
lattice leads to a Gaussian DOS without band edges in d→∞, which is unphysical
since in the low-density limit the energy per electron becomes infinite and because an
unbounded band violates the single-band assumption of energetically well-separated
bands. Inclusion of NNN hopping not only leads to magnetic frustration and an
asymmetric DOS but (for an appropriate sign of the hopping amplitudes) cures the
problem of infinite energy in the low-density limit by introducing a sharp lower band
edge in d → ∞.2 Another conventional way of establishing band edges in d = ∞
is taking this limit on the Bethe lattice which yields the semi-elliptic DOS used
throughout chapter 3. Here, problems arise from the fact that the Bethe lattice is
not a regular lattice but a treelike structure which has no loops and no well-defined

1The quotation marks, which we will drop from now on, are a reminder that (at least) interactions
with lattice ions and core electrons are already included in the “noninteracting” dispersion εk and,
consequently, determine the “noninteracting” DOS.

2This cure is, however, not stable upon further extension of the hopping range: hopping to
third-nearest neighbors generically reintroduces the low-energy tail extending to ε = −∞.



28 2. Lattice and Density of States

momentum space.
The second motivation for studying the relation between lattices and correspond-

ing densities of states is that the knowledge of the DOS is not sufficient for the
computation of two-particle properties like susceptibilities and, in particular, trans-
port properties. In fact, a large part of chapter 4 is devoted to the question of how
the optical conductivity σ(ω) can be defined and computed for the Bethe lattice (or,
more generally, for a lattice with a semi-elliptic DOS in the limit d = ∞). It would
be desirable to find a regular isotropic3 and translationally invariant lattice (with a
well-defined k-space) with the same single-particle properties (i.e., the same DOS)
as the Bethe lattice. Transport properties could then be computed directly from
first principles. As shown in Sec. 2.4 and in subsection 4.4.5, this is indeed possi-
ble. Another important application of the new method developed in this work is the
computation of the optical conductivity for a given LDA DOS in Sec. 5.4. Although
here, in principle, the full dispersion εk could be calculated, an educated guess for
the DMFT estimate of σ(ω) will be obtained without the numerically complicated
evaluation of ∇εk.

A third point relates to the question of how relevant results calculated in d =∞
are to the finite-dimensional systems of the real world. Since the DOS represents the
noninteracting limit of the model Hamiltonian in any dimension, it seems questionable
to rely on features of the DOS which are not robust under change of dimensions,
i.e., cannot be obtained under similar assumptions concerning the hopping matrix
elements in at least any dimension 3 ≤ d ≤ ∞. One example where a feature is not
generic although it occurs in d = 3 and d = ∞ is the singularity of the fcc DOS at
the lower band edge. This feature is not present in any finite dimension d > 3 unless
NNN hopping is chosen appropriately; see, e.g., Ulmke (1998) and Sec. 2.1. Even
more importantly, our study of the paramagnetic Mott metal-insulator transition
performed in chapter 3 would not be complete without a discussion of microscopic
mechanisms for frustration and their implications for the DOS and for transport
properties in infinite and finite dimensions.

The numerically exact studies of tight-binding models in large but finite dimen-
sions presented in this chapter were made possible by the development of a computer
program which allows for the computation of the DOS in arbitrary (finite) dimensions
given the dispersion εk. This computation is performed by Monte Carlo sampling of
the d-dimensional integral (volume VB of the Brillouin zone)

ρ(ε) =
1

VB

∫

dk δ(ε− εk) (2.1)

on a discretized energy interval. Originally, the computation of the DOS was only a
byproduct (at no additional cost) of computations of

ρ̃(ε) =
1

VB

∫

dk δ(ε− εk)|vk|2 (2.2)

3Here and in the following, we use the term isotropic for a lattice with hypercubic symmetry
since in that case the cartesic axes are equivalent and all transport properties are isotropic in the
long-wavelength limit.
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which is the essential lattice input to the optical conductivity within the bubble ap-
proximation (see chapter 4 where results for ρ̃(ε) are also presented). However, a fast
and reliable way of computing the DOS is always useful since in spite of considerable
analytic effort a numerical integration is unavoidable even for the hypercubic lattice
with NN hopping in d ≥ 2 [see, e.g., Schlipf (1998)].

The most important results of this chapter are the exact analytic expression and
numerical estimates for extended hopping matrix elements defined on a hypercubic
lattice which yield a semi-elliptic DOS in the limit d→∞. In fact, the new method
developed in this chapter for determining dispersion, transport properties, and matrix
elements in d = ∞ is very general; it can be applied for any arbitrary target DOS.
The method is based on a generalization of the observation that the dispersion of
the fcc lattice can be written as a function of the dispersion of the hc lattice. This
expression, a (quadratic) polynomial in εhc

k , implies a simple transformation rule for
the DOS. In the course of this thesis it became apparent that parts of the necessary
formalism had already been worked out, but had not been published. Extending van
Dongen’s (2001) construction via expansion of the dispersion in Hermite polynomials
we will show that both the hopping matrix elements and all information (e.g., the
Fermi velocity) needed for the computation of transport properties can be obtained
in a controlled scheme.

The structure of the remainder of this chapter is as follows: In Sec. 2.1 we will first
discuss hypercubic lattices with NN hopping matrix elements only, then consider t-t′

hopping to NNs and NNNs and, finally, we will treat the fcc lattice which is equivalent
to a hc lattice with NNN hopping only. Conventional ways of constructing a semi-
elliptic DOS in d =∞, i.e., via the fractal Bethe lattice and the disordered infinite-
range hopping model are summarized in Sec. 2.2. The new general dispersion scheme
is then developed in Sec. 2.3. As a first practical application we use this method for
the construction of a regular lattice with Bethe semi-elliptic DOS and begin with the
characterization of its transport properties in Sec. 2.4. The robustness of the new
method is demonstrated by studying both the effects of truncation of the hopping
range and of finite dimensionality. Our treatment of the hyperdiamond lattice, a
regular non-Bravais lattice with a reduced number of loops, in App. B supplements
the findings of this chapter and our discussion of loops in subsection 4.4.2.

2.1 Hypercubic Lattice and Extensions

2.1.1 Definitions and Analytical Considerations

The d-dimensional hypercubic (hc) lattice is spanned by d orthonormal primitive
vectors (setting the lattice spacing to a = 1) so that the cartesian components of
each lattice vector are integers and the Euclidean length (or 2-norm) of a vector is
given by

|v| := ||v||2 =
( d∑

α=1

v2
α

)1/2

(2.3)
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as a special case of the l-norm ||v||l := (
∑d

α=1 |vα|l)1/l. Clearly, the shortest lattice
vectors are the unit vectors ±eα with length 1 which define nearest neighbors (NN)
while for d > 1 next-nearest neighbors (NNN) are connected by the sum of two
different primitive lattice vectors ±eα ± eβ with α 6= β and length

√
2. For d ≥ 3,

third-nearest neighbors have length
√

3 while among the fourth-nearest neighbors are
those connected by extended hopping along the coordinate axis (length 2). While even
for a full simple cubic lattice of Wannier orbitals some hopping matrix elements may
exactly vanish for symmetry reasons, hopping to, e.g., 4th or 10th nearest neighbors
(i.e., a 2-3 fold increase of the Euclidean hopping range compared with NN) is not
necessarily negligible.4

Scaling and Dispersion

Generically, the number of Dth-nearest neighbors in d dimensions is of the order
(2d)D, provided5 that D <∼ d. In order for the variance of the DOS to remain finite
the hopping matrix elements then have to be scaled6 as tij = t∗ij(2d)

−||ri−rj ||/2. Here,
we used a short notation for the 1-norm, also called “taxi cab metric” or “New York
metric”,

||v|| := ||v||1 =
d∑

α=1

|vα| . (2.4)

For the remainder of this section we restrict the matrix elements to NN and NNN
hopping with amplitudes t and t′, respectively, as illustrated in Fig. 2.1 for d = 3.
This corresponds to a dispersion

εtt
′

k = − t
L

∑

〈i,j〉
exp [ik(Ri −Rj)]−

t′

L

∑

〈〈i,j〉〉
exp [ik(Ri −Rj)] (2.5)

= −2t
d∑

α=1

cos(kα)− 2t′
d∑

α,β=1
α6=β

cos(kα) cos(kβ), (2.6)

4Note that long-range hopping is compatible with a local Coulomb interaction provided the latter
is understood as the non-Hartree part of the full interaction (whereas the Hartree part is absorbed
into the lattice potential).

5 This assumption arises in all DMFT calculations and is clearly generically violated in any finite
dimension: In the DMFT perturbation expansion[] one assumes that at every vertex O(d) directions
can be chosen independently which is only true if the dimension is larger than the number of vertices,
i.e., the order of the diagram. In other words, for a given dimension, higher order diagrams are
treated worse within a local approximation than lower order diagrams; the limits of infinite-order
perturbation theory and infinite dimensionality do not commute. Physically, this means that there
exists no critical dimension above which the DMFT is always qualitatively correct. For consequences
of the violation of scaling relations in the context of our construction of general kinetic energies, see
Sec. 2.3.

6A counter example to this general rule is extended hopping along the axes (Müller-Hartmann,
1989a) which only contributes to the energy if scaled as tij = t∗ij (2d)−1/2. It leads to a Gaussian
DOS although, in general, the lattice is neither bipartite nor shows perfect nesting (cf. subsection
2.1.3).
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Figure 2.1: Cubic lattice with NN (t) and NNN hopping (t′); (from Schlipf (1998)).

where L is the number of lattice sites Ri and 〈i, j〉 and 〈〈i, j〉〉 denote NN pairs and
NNN pairs, respectively. The variance of the resulting DOS can be easily computed
for arbitrary dimension from the sum of squares of all hopping terms (cf. subsection
2.2.2):

〈ε2〉ρ(ε) = 〈ε2k〉k = 2dt2 + d(d− 1)(t′)2. (2.7)

Here, we have introduced the expectation values7

〈f(ε)〉ρ(ε) =

∞∫

−∞

dεf(ε)ρ(ε) (2.8)

〈f(k)〉k =
1

N

∑

k

f(k) . (2.9)

When t and t′ are scaled with the inverse number of NN and NNN, respectively, and
we introduce the ratio a∗ of these scaled amplitudes,

t =
t∗√
2d
, t′ =

t′∗
√

d(d− 1)
, a∗ =

t′∗

t∗
(2.10)

we obtain for the variance

〈ε2k〉k = (t∗)2 + (t′
∗
)2 = t∗2

(
1 + a∗2

)
. (2.11)

For given ratio a∗ <∞ the variance can thus be fixed to 1 by setting t∗ = 1/
√

1 + a∗2.

7Note that the definitions are obviously consistent, i.e., 〈f(εk)〉k = 〈f(ε)〉ρ(ε) for constant func-
tional dependence f ; consequently, the appropriate definition of the average usually follows from
the argument and may be omitted.
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Bipartite Lattices and Perfect Nesting

Independent of hopping range and dimension, a hc lattice may be split into two
sublattices A and B,

A = {r; (−1)||r|| = 1}, B = {r; (−1)||r|| = −1}, (2.12)

which is visualized in Fig. 2.1 by using empty circles for A sites and filled circles for
B sites, respectively. Since the origin has no special meaning, both sublattices A and
B are equivalent. Note that each sublattice constitutes a face centered cubic lattice
in 3 dimensions so that we can use either of the two sets in (2.12) in order to define
a generalized face centered cubic (fcc) lattice in arbitrary dimensions d > 2. The
tendency towards breaking this A − B symmetry by staggered charge or spin order
is largest when hopping matrix elements are nonvanishing only between (as opposed
to within) the sublattices. The simplest example for such a bipartite lattice is the hc
with NN hopping only; the most general case (on a full hypercubic host lattice) can
be expressed by the requirement tij = 0 for (−1)||ri−rj || = 1. It is easily seen that
(for real tij) all such bipartite Bravais lattices have symmetric DOSs by performing

the particle-hole transformation ĉiσ → ĉ†iσ for ri ∈ A and ĉjσ → −ĉ†jσ for rj ∈ B. A
prominent example for a non-bipartite lattice is the generalized fcc lattice mentioned
above which corresponds to the limit t→ 0 (while t′ 6= 0) of (2.5).

For the hypercubic lattice the particle hole symmetry can be expressed in k-space
(Q = (π, π, . . . ))

εk+Q = −εk , (2.13)

which implies perfect nesting at half filling (n = 1): the Fermi surface (all k points
with εk = 0) is mapped on itself for k → k + Q which amounts to an effective
doubling of the unit cell (or halving of the Brillouin zone) and again implies a potential
instability against A − B symmetry breaking. A trivial consequence of (2.13) is a
symmetric DOS, i.e., ρ(−ε) = ρ(ε).

2.1.2 Numerical Results

The DOS of the hc lattice with NN hopping is shown in Fig. 2.2. For d ≥ 3,
ρhc(ε) <∞ at all energies. Apart from Van-Hove singularities with infinite slope for
d = 3 and a jump in the slope for d = 4 the overall shape is quite regular with no
visible qualitative changes for d > 6. For d→∞, more spectral weight is transferred
from |ε| ≈ 3/2 to ε ≈ 0 while the exponentially small tails extend to ±∞. An
application of d = ∞ results to d = 3 apparently misses the Van-Hove singularities
(as it must for any lattice type) and (for n = 1) slightly overestimates the DOS at the
Fermi level but does not introduce artificial features – except for the infinite energy
tails.

Switching on additional NNN hopping destroys the symmetry of the DOS as
illustrated in Fig. 2.3 for a∗ = (t′)∗/t∗ = −0.25 which introduces an important
aspect of realistic tight-binding calculations. Except for d = 2 and the Van-Hove
singularities visible for d = 3 (at ε = ±

√

2/3) and d = 4 (at ε = 0), Fig. 2.3 implies
a rapid qualitative convergence with few differences between d = 4 and d = 5. This
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Figure 2.2: a) DOS of the hypercubic lattice with NN hopping in d dimensions. b) Ratio
of the DOS for finite d to its d =∞ limit (only shown for ε ≥ 0).
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Figure 2.3: DOS of the hypercubic lattice with NN and NNN hopping, a∗ = −0.25 for
low dimensions. The limit d =∞ is included for comparison.
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Figure 2.4: DOS of the hypercubic lattice with NN and NNN hopping, a∗ = −0.25 for
high dimensions. As seen in the inset, a sharp singular lower band edge develops for d→∞.

picture changes, however, when d is further increased. As shown in Fig. 2.4, for d ≥ 6
a maximum appears8 near the lower band edge which develops into a sharp band edge
with a square-root singularity (i.e., with the asymptotic form of an inverse square
root) for d → ∞. Increasing the absolute value of a∗ increases these tendencies as
depicted for a∗ = −0.3333 in Fig. 2.5 and Fig. 2.6. Here, a broad maximum at low
energies develops already for d = 2 which becomes narrow and distinguishable from
the main maximum for d ≈ 10 and approaches a square-root singularity with a height
substantially exceeding the main maximum for d & 100. We observe that for finite
dimensions there is a low energy tail of relative width 1/

√
d which only vanishes in

d = ∞. An application of d = ∞ with NNN hopping to d = 3 captures the aspect
of non-particle-hole symmetric Hamiltonians, but the removal of the tail extending
to negative infinite energy comes at the price of an unphysical singularity which is
characteristic of very high dimensions d & 100 only.

Similar observations can be made for the fcc lattice (formally a∗ = −∞) where
in d = 3 one of the Van-Hove singularities is at the lower band edge leading to a
logarithmic divergence. Hence, in this case, sharp band edges with singularities exist
in d = 3 and d = ∞. At intermediate dimensionality, e.g., for d = 4, d = 5, and
d = 6, however, the overall shape changes little with dimension while for d > 10 the

8This feature is absent in d = 6 for the alternative scaling t′ = t′
∗
/d (no results shown) to which

(2.10) converges in the limit d→∞ . Scaling (2.10) is, however, strongly favorable since it ensures
the same ratio of NN and NNN contributions to the variance of the energy in all dimensions; see
(2.11).
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Figure 2.5: DOS of the hypercubic lattice with NN and NNN hopping, a∗ = −0.3333 for
low dimensions. The limit d =∞ is included for comparison.
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Figure 2.6: DOS of the hypercubic lattice with NN and NNN hopping, a∗ = −0.3333 for
high dimensions. The magnified inset shows that the form at the lower band edge is not
singular for moderately high dimensions d ≈ 10.
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Figure 2.7: DOS of the fcc lattice.

maximum value of ρfcc(ε) increases significantly and develops into the square-root
singularity observed at d =∞ (see Fig. 2.7). Again, the singularity and the absence
of the lower energy tail in this limit are not robust features when the dimensionality
is decreased and thus results obtained in d = ∞ which depend on the singularity
(as opposed to only a strong asymmetry) do not carry over to physically interesting
dimensions.

The general behavior seen for t-t′ hopping on the hc lattice and for NN hopping
on the fcc lattice is easily explained by looking at the expressions for the energies for
the hypercube with NN hopping,

εhc
k = −2t

d∑

α=1

cos(kα) (2.14)

and the fcc lattice,

εfcck = 2t′
d∑

α,β=1
α6=β

cos(kα) cos(kβ) (2.15)

= 2t′
[( d∑

α=1

cos(kα)
)2

−
d∑

α=1

cos2(kα)
]

(2.16)

= dt′
[(
√

2

d

d∑

α=1

cos(kα)
)2

− 1− 1

d

d∑

α=1

cos(2kα)
]

. (2.17)
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Figure 2.8: DOS of the fcc lattice with extended hopping along the axes.

Both the prefactor and the first two terms in the square bracket of (2.17) are O(1)
while the third term is O(1/

√
d) in high dimensions. Consequently, we can write

εfcck =
(t′)∗√

2

[
(εhc

k /t
∗)2 − 1

]
+O(1/

√
d) (2.18)

which for d → ∞ implies9 a square-root singularity in the DOS broadened by a
Gaussian of width 1/

√
d. Strictly in d =∞, the DOS of the fcc lattice is given by

ρfcc = 2
e−(1+

√
2ε)/2

√

1 +
√

2ε
√

2π
. (2.19)

Since the third term in (2.17) corresponds to extended hopping along the axes it can
be cancelled by adding a corresponding term in the Hamiltonian in which case there
is a square-root singularity in any dimension as shown in Fig. 2.8. Densities of states
obtained via such a transformation εk = f(εhc

k ) cannot show a stronger dimensional
dependence than the hc DOS itself.10 Indeed, the curves for d > 3 in Fig. 2.8 are
hardly distinguishable. Even d = 3 only stands out only by the Van-Hove singularity
at ε = −

√
2/6, but has the same square-root singularity at the lower band edge.

While the dramatic changes of the DOS introduced by NNN hopping clearly show
that extended hopping matrix elements are important we wish to point out that the

9As is apparent from (2.1), a DOS (which may be seen as probability distribution) transforms
under change of variables like a delta-function, see (2.56).

10This fact will be utilized in Sec. 2.3.
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inclusion of hopping elements tij with odd range D = ||ri − rj|| ≥ 3 will reintroduce
infinite-ranged low-energy tails and thus destroy the sharp band edge, one of the
prominent features of t-t′ DOS in d = ∞. This issue will be treated in a broader
context in Sec. 2.3. For the DMFT computation of transport properties for the t-t′

lattice, see subsection 4.5.3.
For a discussion of the hyperdiamond lattice, see App. B.

2.1.3 Magnetic Frustration and Asymmetry of the DOS

One important question in the context of the DMFT is whether magnetic frustra-
tion, in particular the suppression of antiferromagnetism, is closely related to other
properties like the DOS and the optical conductivity or whether it can be regarded
as being essentially independent, at least in high dimensions. While it is immediately
clear that unfrustrated particle-hole symmetric systems have a symmetric DOS, the
converse statement is not generally true for Z =∞. In fact, when extended hopping
only along the cartesic axes is introduced for the hypercubic lattice, the DOS re-
mains Gaussian while for suitably chosen hopping matrix elements antiferromagnetic
order is suppressed (Müller-Hartmann, 1989a). In the following, we will outline an
argument why this behavior (and not only the model) should be regarded as patho-
logical. First, we observe that for fixed hopping matrix elements tD to Dth-nearest
neighbors along the cartesic axes the DOS in d dimensions can be obtained from
folding the one-dimensional DOS d−1 times with itself. Since the DOS is symmetric
in d = 1 if and only if the system is unfrustrated (i.e., t2n = 0 for integer n) the
same applies for all finite dimensions d. In Sec. 1.2 we have seen that perfect anticor-
relation in the two-particle density of states Dq(ε1, ε2) at the antiferromagnet wave
vector Q, i.e., η(Q) = −1 is associated with a strong antiferromagnetic instability
due to particle-hole symmetry. More generally, an instability at vector q occurs for
ηq ≡ η(q) ≈ −1. It seems thus reasonable to associate magnetic frustration with
the deviation of the minimum of η from −1. For the lattice under consideration it is
clear that all extrema are on the diagonal {q; q = λQ; 0 ≤ λ ≤ 1}. For this line, we
have11 (Müller-Hartmann, 1989a)

η(λQ) =
1

t2

∞∑

D=1

t2D cos(Dλπ) , (2.20)

where t2 =
∑∞

D=1 t
2
D. First, we note that η(λQ) ≥ −1 and that η(Q) = −1 only in

the unfrustrated case where t2n = 0 for all n. For a fully quantitative analysis, we
restrict hopping to NN and to NNN (along the cartesic axes). Then, the minimum
of η(λQ) is for unit variance (t∗1

2 + t∗2
2 = 1)

ηmin =

{

−1 + 2t∗2
2 for t∗2

2 ≤ 0.2

−9t∗2
4−2t∗2

2+1

8t∗2
2 for 0.2 < t∗2

2 ≤ 1
. (2.21)

11Note that (in this special case) we can use either scaled or unscaled hopping matrix elements
since the scaling factor is independent of the hopping range.
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Figure 2.9: DMFT momentum parameter η(λQ) [(1.23) and (2.20)] for the hypercubic
lattice with hopping to NN and to NNN along the cartesic axes using scaled amplitudes
1 − t∗22 and t∗2

2, respectively. The symmetric graph for t∗2
2 = 1 is not fully shown. Inset:

minimal value of η(q) and rescaled third moment of the DOS as a function of t∗2
2; both

frustration and asymmetry of the DOS are maximal at t∗2
2 = 1/3.

This value, i.e., the frustration is maximal for t∗2
2 = 1/3 (when η(q) ≥ −1/2 for all

q). This is exactly the value for which also the asymmetry of the DOS, measured
by its third moment, 〈ε3〉 = 6d t21t2 = 3(1− t∗22)t∗2/

√
2d acquires its maximum. Thus,

for finite dimensions, maximal frustration coincides with maximal asymmetry of the
DOS. This effect becomes only unobservable for Z →∞ since the associated weight
becomes exponentially small.12 The main part of Fig. 2.9 shows η(λQ) for different
values of t∗2

2. The minimum is at λ = 1 for t∗2
2 ≤ 0.2 and approaches λ = 0.5 for

t∗2
2 → 1 (which is again unfrustrated). The value of the minimum as a function of

t∗2
2 is shown in the inset together with the scaled third moment which illustrates that

maximal frustration coincides with maximal asymmetry for t∗2
2 = 1/3. We will find

more indications that magnetic frustration is generically associated with an asym-
metry of the DOS by using the renormalized perturbation expansion in subsection
2.2.2.

2.2 Bethe Lattice, RPE, and Disorder

Within this work and the DMFT literature in general, the term “Bethe lattice” is
most often used in the sense of a lattice having the “Bethe DOS”, i.e., a semi-elliptic
DOS, without paying too much attention to the particular properties of this pseudo-

12Note that the ratio of the band edges, i.e., of the maximum and minimum energies, is indepen-
dent of d. With respect to this criterion, the asymmetry is maximal for t∗2

2 = 1/5, where the ratio
is 0.5 or 2 (depending on the signs of t1 and t2).
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a) b)

Figure 2.10: a) Scheme of Bethe tree for connectivity K = 4 (i.e., Z = 5). b) Scheme of
triangular Husimi cactus for connectivity K = 2 (i.e., Z = 6) which differs locally from the
Bethe tree by the presence of a single bond (dashed lines). Black and white dots denote A
and B sites on the bipartite Bethe tree, respectively. Corresponding AF order is partially
frustrated on the corresponding Husimi tree in finite dimensions.

lattice. In this section, we will take a closer look at the implicit definitions and come
to the conclusion that the original construction need not and should not be taken too
seriously in the context of applications of the DMFT method to correlated electron
systems. We will also consider a Bethe lattice with NNN hopping and derive some
more general results from an expansion in terms of self-avoiding loops, the RPE.

2.2.1 Bethe Tree, Cayley Tree, and Husimi Cactus

The Bethe lattice of connectivity K is defined as a pseudo-lattice where each site is
surrounded by Z = K + 1 nearest neighbors and where no closed loops are formed
by NN bonds (Economou, 1979) which makes it a tree in the sense of graph theory.13

While this construct coincides with the usual d = 1 lattice for Z = 2, it is not a
regular lattice for Z > 2 as is visualized in Fig. 2.10a for K = 4, i.e., Z = 5. Here
it is shown as a directed graph where a level number i ∈ Z can be assigned to each
site, so that a site at level i is connected by one edge to a site in the lower level i− 1
and by K edges to sites in the higher level i + 1. Its name stems from the fact that
the Bethe-Peierls approximation (Bethe, 1935; Peierls, 1936) for crystalline alloys or
Ising models becomes exact on this structure (Kurata, Kikuchi, and Watari, 1953).14

The Bethe tree is often viewed as the infinite-size limit of a Cayley tree which is a
finite mathematical tree where all nodes except for the leaves are connected by edges
to Z other nodes. The infinite-size limit of the Cayley tree is not unproblematic,
since a “spherical” Cayley tree where all leaves have (taxi cab) distance n from a
selected central site consists of N = [Z(Z − 1)n − 2]/(Z − 2) sites of which Ns =

13A tree is best defined as a connected, planar graph without loops, where a graph is a topological
structure which can be represented as a set of points (nodes) and a set of lines (edges) connecting a
subset of the nodes. Final segments and the nodes at their ends are called leaves (see, e.g., Weisstein
(1998)).

14It is easily seen that the Ising model without external field becomes trivial on a lattice without
loops by replacing the site variables through (then independent) bond variables τij = σiσj . Also
note that an extension of the Bethe-Peierls approximation to a model with diagonal disorder can
be used in order to study Anderson localization (Kawarabayashi, 1993).
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Figure 2.11: Scheme of spherical Cayley tree with connectivity 2 and radius 5 (black solid
lines). A selected set of NNN bonds is marked by dashed and dotted lines. Each sublattice
formed by the NNN bonds is fully frustrated with respect to AF order.

Z(Z − 1)n−1 constitute the surface (i.e., are leaves). This is illustrated in Fig. 2.11
schematically for radius n = 5 and Z = 3. In the limit of infinite radius n, a finite
fraction Ns/N ≈ (Z − 2)/(Z − 1) of sites is on the surface (Thorpe, 1981). A tight-
binding model defined on such a Cayley tree would be dominated by surface states,
in particular in the limit Z → ∞, where Ns/N → 1. This problem can be avoided
by using the bulk definition given at the beginning of the paragraph. The Bethe
lattice is bipartite; therefore, the generic low-temperature phase of a Hubbard model
defined on the Bethe lattice is antiferromagnetic at half filling.

The Husimi cactus is a generalization of the Bethe lattice where each bond is
part of exactly one loop and is shown in its triangular form15 in Fig. 2.10b. For finite
Z, these loops introduce some degree of frustration. Since a single loop becomes
irrelevant for Z →∞, however, all properties of the Husimi cactus converge to that
of the Bethe tree in this limit. In contrast, the inclusion of hopping along all NNN
bonds (dashed lines in Fig. 2.11) leads to strong magnetic frustration in all dimensions
and to an asymmetric DOS (see subsection 2.2.2).

The absence of loops greatly simplifies not only calculations for spin models, but
also allows for an exact computation of the Green function for the noninteracting
tight-binding model with nearest-neighbor hopping for arbitrary Z. Using a mean-
field approach in the spirit of the Bethe-Peierls approximation (Thorpe, 1981) or the
renormalized perturbation expansion around the atomic limit (Economou, 1979), one

15In the general definition of the Husimi cactus, both the type of polygons, i.e., the length of
loops, and the connectivity for each site can be chosen arbitrarily.
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Figure 2.12: DOS (2.23) of the Bethe tree with finite connectivity K. It evolves from the
singular form of a chain at K = 1 to a semi-elliptic form for K →∞.

obtains, e.g., for the diagonal element (hopping amplitude t, on-site energy ε0 = 0),

G00(ω) =
2(Z − 1)

(Z − 2)ω + Z
√

ω2 − 4(Z − 1)t2
, (2.22)

where the imaginary part of the square root is taken to be positive for a retarded
Green function. The density of states,

ρ(ε) =
Z

2π

√

4(Z − 1)t2 − ε2
(Zt)2 − ε2 , (2.23)

is shown in Fig. 2.12 for a hopping amplitude scaled as t = t∗/
√
Z and t∗ = 1.

The striking feature of the Bethe DOS that the full bandwidth (including all states)
is O(Z1/2) instead of O(Z) (which would be expected from Perron’s theorem) can
be attributed to the absence of long-wavelength excitations; see Thorpe (1981) and
references therein. The spectral weight, concentrated at the band edges for low Z,
shifts toward the center with increasing Z until a semi-elliptic form,

ρBethe(ε) =
1

2π

√
4− ε2 . (2.24)

is obtained for Z =∞ which we will label as “Bethe DOS” in the remainder of this
work.

While the reason for using this Bethe DOS within the DMFT is the presence of
sharp band edges, the semi-elliptic form also has the advantage that the k integrated
Dyson equation (1.30) can be performed and inverted analytically

G(ω) =
z(ω)

2

(

1−
√

1− 4

z2(ω)

)

, (2.25)

Σ(ω) = ω + µ−G(ω)− 1/G(ω) , (2.26)
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Figure 2.13: Asymmetric model DOS (2.27). For a = 0, the semi-elliptic DOS of the
Bethe lattice (for Z = ∞) is recovered. As shown below, the extremely asymmetric case
a = 1 corresponds to a Bethe lattice with only NNN hopping (also for Z =∞).

where z(ω) = ω + µ− Σ(ω).

Giving up the strict connection to a (somewhat unphysical) model, one may break
the particle-hole symmetry and concentrate spectral weight near one of the band
edges by introducing an asymmetry parameter a (Wahle, Blümer, Schlipf, Held, and
Vollhardt, 1998)

ρa(ε) =
1 +
√

1− a2

2π

√

1− (ε/2)2

1 + aε/2
. (2.27)

Here, −1 ≤ a ≤ 1; a = 0 corresponds to the semi-elliptic DOS. As apparent in
Fig. 2.13, the asymmetry develops into a square-root divergence at one of the band
edges for |a| → 1. The particular advantage of (2.27) is that the analytic solution
and inversion of the corresponding lattice Dyson equation is still possible.

2.2.2 Renormalized Perturbation Expansion

We will now derive very general relationships between weights of self-avoiding loops
in lattices and moments of the corresponding DOS. Interesting general consequences
for lattices with semi-elliptic DOS will follow in subsection 2.2.2.

We assume a finite total bandwidth, i.e., that all energy levels are in the range
[εa, εb]. Even when the assumption is not always fulfilled for Z = ∞ it can be
relaxed in the relevant cases by defining a suitable limiting process for Z → ∞.16

We use the spectral representation of the noninteracting Green function to write for

16One exception is the fully connected model, for which 〈e〉 6= 0 (van Dongen and Vollhardt, 1989);
here no limiting form of the DOS exists for Z →∞ (and all moments 〈εi〉 for i > 1 are infinite).
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ω > max{|εa|, |εb|}

G(ω) =

εb∫

−εa

dε
ρ(ε)

ω − ε =

εb∫

−εa

dε ρ(ε)
1

ω

∞∑

i=0

( ε

ω

)i

=
∞∑

i=0

〈εi〉
ωi+1

. (2.28)

Thus, the high-frequency behavior of G is easily obtained from moments of the DOS
and vice versa. Obviously, a necessary condition for (2.28) and the following conclu-
sions to hold is that all moments 〈εi〉 exist.

The Renormalized Perturbation Expansion (RPE) is an expansion in the hopping
matrix elements around the atomic limit where all contributions to the local Green
function for some site i can be obtained by considering all decorated self-avoiding
loops starting and ending at i. While in finite dimensions the decorations must be
computed in terms of special self-avoiding loops which do not touch any site already
contained in loops of lower hierarchy, this restriction becomes irrelevant in the limit
Z → ∞ where the decorations are nothing but full local Green functions. Thus,
for the simplest case of full translational symmetry one arrives at a single closed
self-consistency equation for some site i,

G−1(ω) = ω −
(

G
∑

j

t2ij +G2
∑

j 6=k
tijtjktki +G3

∑

j 6=k 6=l;j 6=l
tijtjktkltli + . . .

)

(2.29)

=: ω −
∞∑

n=2

anG
n−1 , (2.30)

where the coefficients an measure the weight of self-avoiding loops of length n. Note
that when all nonzero hopping matrix elements are equal, the simpler expression an =
tnNn applies, where Nn is the number of self-avoiding loops of length n originating
from site i which implies a one-to-one correspondence between the DOS and the
topology of the lattice.

Multiplying (2.30) by G and inserting the expansion (2.28) we can compute mo-
ments of the DOS from the hopping weights order by order

〈ε0〉 = 1 ; 〈ε1〉 = 0 ; 〈ε2〉 = a2 . (2.31)

Enforcing, for simplicity, unit variance by setting the weight a2 of 2-loops to 1, the
higher order moments read

〈ε2〉 = 1 ; 〈ε3〉 = a3 (2.32)

〈ε4〉 = 2 + a4 ; 〈ε5〉 = 2 + 3a3 + a5 . (2.33)

It is easy to check that only (2.33) and corresponding higher order expressions are
specific to d =∞, while (2.32) also applies to finite dimensions: the third moment of
any DOS is directly determined only by the weight of self-avoiding 3-loops (i.e., the
scaled number of 3-loops if all nonvanishing matrix elements are equal for a trans-
lation invariant lattice, 〈ε3〉 = t3N3). We can thus spot one of the most prominent
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mechanisms for frustration (which determines, e.g., the magnetic properties of fcc lat-
tices) by just looking at the DOS and measuring its third moment.17 More generally,
a symmetric DOS implies irrelevance or cancellation of loops with odd length.

Application to the Bethe lattice

An application of the above formalism to the Bethe lattice is particularly simple, since
the only self-avoiding loops have length 2 and thus the series in (2.29) terminates at
the first term,

G−1(ω) = ω −G(ω) (2.34)

from which (2.25) follows directly. Introduction of NNN hopping on the Bethe lat-
tice completely changes its topology and introduces loops of arbitrary order as is
illustrated in Fig. 2.11. For d =∞ and unit variance, we have in this case

a3 = t′∗(t∗2 + t′∗
2
); a4 = 8t∗2t′∗

2
+ t′∗

4
; a5 = 20t∗2t′∗

3
+ t′∗

5
. (2.35)

Already at this point we can see that the third moment is nonvanishing for all finite
t′∗ and consequently the DOS must be asymmetric. This result contradicts a claim
of the Kotliar group (Rozenberg, Kotliar, Kajüter, Thomas, Rapkine, Honig, and
Metcalf, 1995) that the DOS of the Bethe lattice with NN and NNN hopping should
be always semi-elliptic.18 While it might be possible to find a closed solution for an for
arbitrary n and thus compute reliable numerical estimates via Padé approximants, it
is clearly impossible to obtain a closed solution for G and the DOS in the general case
along this route (it would, in fact, be very surprising when the full exact result could
be written in closed form at all). At least, we are able to present the full solution for
the Bethe lattice with NNN, but no NN hopping (i.e., for t∗ = 0). For this special
case and unit variance we have an = 1 for all n due to the very special topology in
this limit where all sites visited by each self-avoiding loop of length n ≥ 3 are NN of
the same site (not on the loop). Therefore (2.29) reduces to a geometric series and
we obtain for Z =∞19

G(ω) =
1

2
+

√

1

4
− 1

1 + ω
(2.36)

ρ(ω) =
1

2π

√
3− ω√
1 + ω

, (2.37)

which agrees with the model DOS (2.27) for the case of extreme asymmetry (a = 1)
when the frequency is shifted by ω → ω+1. Thus, we have shown that the model DOS

17This observation implies that 3-loops do not survive the limit d → ∞ for the hc lattice with
extended hopping along the axes (Müller-Hartmann, 1989a) which we verified in subsection 2.1.3 and
makes the mechanism for magnetic frustration present in this lattice type appear highly pathological.

18In fact, our observation essentially invalidates all results concerning the microscopic treatment of
frustration in the cited paper. We mention in passing that the sum rule for the optical conductivity
stated in this paper is also incorrect, even for the Bethe lattice with only NN hopping (cf. Sec. 4.4).

19The generalization to finite Z seems straightforward and might be considered in an upcoming
publication.
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interpolates between Bethe lattices for Z =∞ with only NN and only NNN hopping.
In order to exclude that there is an accidental connection to the microscopic model
also for 0 < a < 1, we determined the leading nontrivial corresponding moments of
the DOS (2.27) for a = 0.9 (which are 〈(ε − 〈ε〉)3〉 ≈ 0.6268, 〈(ε − 〈ε〉)4〉 ≈ 2.3929,
〈(ε − 〈ε〉)5〉 ≈ 3.3802) and fixed the ratio t′∗/t∗ ≈ 0.2208 to fulfill (2.32) and (2.35).
This leads to a4 = 0.3568, a5 = 0.1917 and corresponds to 4th and 5th moments of
2.3568 and 4.0720, respectively. Clearly, the results are not compatible; a5 would
even have to have the opposite sign in order to reproduce the 5th moment of the
model DOS.

From the above we may further conclude that the weights an for self-avoiding
loops of length n > 2 must cancel exactly also for the tight-binding Hamiltonian
having a semi-elliptic DOS which we will construct in the following section. While
this consideration implies that the Bethe tree is the only (pseudo)lattice with semi-
elliptic DOS and only one nonzero hopping parameter it could in principle also be
used to verify or even construct Hamiltonians. In practice, however, there exist many
contributions, e.g., to the sum over 4-loops on hypercubic lattices, even for a small set
of longer range hopping terms. For hopping t to NN and t3 to 3rd-nearest neighbors
we found on the hc lattice the leading contribution

a4 ≈ t∗4 + 36t∗2t∗3
2 + 4

√
6t∗3t∗3 + 48

√
6t∗t∗3

3 + 108t∗3
4 (2.38)

which adds up to -0.04 when the values from Table 2.1 (page 55) are used. Con-
tributions from longer-range hopping are larger than might be expected from the
small value of this partial sum. One contribution is, e.g., 12

√
20t∗2t∗3t

∗
5 ≈ −0.31. We

find it remarkable that the semi-elliptic DOS imposes such severe constraints (i.e.,
the cancellation of all loops of length greater than 2) on corresponding tight-binding
models, even though this criterion appears not to be of general constructive value.

Off-diagonal disorder

One further application where the RPE can provide much insight is off-diagonal
disorder. For independent random variables tij, all contributions from self-avoiding
loops of order n > 2 vanish exactly as long as the hopping elements vanish on average,
〈tij〉 = 0. The remarkable conclusion is that noninteracting Green function and DOS
agree with that of the Bethe lattice (with NN hopping) for arbitrary topology in this
case. This statement, valid for Z = ∞, is more general than Wegner’s treatment of
“gauge invariant” tight-binding models which predicts local Bethe lattice properties
only for systems with a fully symmetric distribution of hopping matrix elements,
〈t2n+1
ij 〉 = 0 (Wegner, 1976). In our view, the tighter restrictions for finite Z can be

linked to the fact that in this case not only the weight of self-avoiding loops, but of
all loops (of length n > 2) has to vanish in order to reduce the effective mean free
path to one lattice spacing, which is the physics of all models with Bethe DOS. In
the context of DMFT calculations, frustration caused by disorder of the above type
was considered for a fully connected model (Georges and Krauth, 1993) and then
also for the more general cases (Dobrosavljević and Kotliar, 1993; Dobrosavljević
and Kotliar, 1994).
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As a last conclusion from this section let us note that additional hopping (e.g.,
along NNN bonds) does not modify the semi-elliptic DOS of the Bethe lattice when
these additional bonds are fully disordered (with zero mean hopping amplitudes). In
contrast to the clean case it is, thus, possible to tune magnetic frustration in such a
system by variation of 〈t∗22〉 at constant DOS.20

2.3 General Density of States in d = ∞

In this section, we will present a general algorithm for finding an isotropic, transla-
tionally invariant tight-binding Hamiltonian corresponding to an arbitrary DOS in
d = ∞. While the availability of such a method to construct a microscopic Hamil-
tonian corresponding to some model DOS might be useful in any dimension, it is
absolutely essential for considering spatially inhomogeneous phases (e.g, antiferro-
magnetism or charge density waves) or computing transport properties within the
DMFT. The algorithm developed in this section will later enable us to perform the
first fully consistent DMFT calculation of the optical conductivity for a periodic and
isotropic lattice (cf. footnote 3 on page 28) with the Bethe semi-elliptic DOS (see
Sec. 4.4).

Scaling Relations

We start by rewriting the usual noninteracting Hamiltonian with general (transla-
tionally invariant) hopping,21

Ĥ0 =
∑

ij,σ

tij ĉ
†
Riσ

ĉRjσ
=
∑

i,σ

∑

τ

tτ ĉ
†
Riσ

ĉRi+τ ,σ (2.39)

=
∑

k,σ

ε(k)n̂kσ, (2.40)

where

ε(k) =
∑

τ

tτeiτ ·k =
∑

τ

(tτ + t∗τ
2

cos(τ · k) + i
tτ − t∗τ

2
sin(τ · k)

)

. (2.41)

Classifying the hopping vectors τ according to their length measured by the taxi-cab
metric, we may split up the kinetic energy accordingly,

ε(k) =
∞∑

D=1

εD(k), εD(k) =
∑

||τ ||=D
tτeiτ ·k . (2.42)

For D > 1, each set of vectors {τ ; ||τ || = D} consists of different subsets which
are pairwise inequivalent such as, for D = 2, the subsets {τ ; τ = ±eα ± eβ;α 6=

20The same applies to the regular, translation invariant model with semi-elliptic DOS which we
will construct in the next section: additional even-range disorder hopping terms could introduce
frustration without changing the DOS.

21For sake of clarity, we write ε(k) instead of εk for the full dispersion [i.e., the full sum in (2.42)]
throughout this section.
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β} and {τ ; τ = ±2eα}. Consequently, one may expect the corresponding hopping
amplitudes to be different. We will choose to neglect all hopping vectors with |τ ·eα| >
1 for any direction α, i.e., only consider vectors of the form τ =

∑D
i=1 eαi

with pairwise
different directions αi. This selection can be justified by the following observations:

• For fixed ||τ ||, the vectors considered are of minimal Euclidean length |τ | hinting
at maximal overlap, i.e., largest |tτ |.

• The fraction of neglected vectors is O(1/d) in high dimensions (as long as
dÀ D, cf. footnote 5 on page 30).

For real (and therefore symmetric) hopping amplitudes22 and in the isotropic case,
the amplitudes tτ are functions of D = ||τ || alone, εD(k) = tD

∑

||τ ||=D eiτ ·k. As in

the case of t-t′ hopping (which corresponds to D = 1, 2 in the present scheme), there
are no cross terms in the variance

〈ε2(k)〉 =
∑

τ ,τ′

tτtτ ′〈ei(τ−τ′)·k〉 =
∑

τ

|tτ |2 =
∑

D

〈ε2D(k)〉 (2.43)

〈ε2D(k)〉 = t2DND; ND = 2D
(
d

D

)

≈ (2d)D

D!
. (2.44)

Here, ND is the number of hopping terms in shell D and the approximation in (2.44)
is valid for d À D. In order for the total variance to remain finite, the amplitudes
tD must be scaled as tD = t∗D/

√
ND, which is consistent with (2.10) and leads to

〈ε2(k)〉 =
∞∑

D=1

〈ε2D(k)〉 =
∞∑

D=1

t∗D
2 . (2.45)

Hopping Matrix Elements and Dispersion; Transformation Function F(ε̃)

Now we have

εD(k) = tD2D
∑

αD>αD−1>···>α1

cos(kαD
) cos(kαD−1

) . . . cos(kα1
) (2.46)

= tD
2D

D!

(
d

2

)D/2

BD(k), (2.47)

where the functions

BD(k) =

(
2

d

)D/2 ∑

αD 6=αD−1 6=···6=α1

cos(kαD
) cos(kαD−1

) . . . cos(kα1
) (2.48)

22Note that while Eqn. (1.10) always yields real tij for atomic orbitals, this is not generally true for
Wannier orbitals where phase factors may arise. In a single-band description, however, a restriction
to the s-band case of real and isotropic hopping amplitudes is natural since the full Hamiltonian
should have the symmetry of the lattice.
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fulfill a recursion relation in d =∞,

BD+1(k) = B1(k)BD(k)−DBD−1(k)
2

d

d∑

α=1

cos2(kα) +O(1/d)

= B1(k)BD(k)−DBD−1(k) +O(1/
√
d) . (2.49)

To leading order, this relation is very similar to that of the Hermite polynomials23

Hen+1(x) = xHen(x)− nHen−1(x) . (2.50)

From (2.49), (2.50), and B0 = 1 we conclude that BD(k) = HeD(B1(k)). Further-
more, we can express the argument x in (2.50) as the dispersion of the hypercubic
lattice with a positive hopping term [i.e., t∗ = −1 in (1.14)] and unit variance:
B1(k) = εhc

k . Consequently, we obtain

εD(k) = tD
2D

D!

(
d

2

)D/2

HeD(B1(k)) (2.51)

and

ε(k) =
∞∑

D=1

t∗D√
D!

HeD(εhc
k ) =: F(εhc

k ) . (2.52)

Finding not only an effectively one-dimensional expression, but even a closed form
(2.52) for the general dispersion of a hypercubic lattice with arbitrary-range hopping
in terms of scaled hopping matrix elements is clearly a significant result. On the one
hand, this expression applies to all such models where the hopping amplitudes de-
pend on taxi-cab distance and therefore systematically classifies most models studied
in the DMFT literature. On the other hand, (2.52) will enable us to explore in-
formation hidden in any given DOS, namely the dispersion and the scaled hopping
matrix elements of a corresponding model (in d =∞), as we will show in the follow-
ing. Since any analytic function can be expanded in Hermite polynomials using the
orthogonality relation

∞∫

−∞

dxHen(x) Hem(x)
e−x

2/2

√
2π

= n! δmn, (2.53)

we can find hopping amplitudes t∗D so that ε(k) = F(εhc
k ) for an arbitrary analytic

function F . As an illustration of this expansion, we rescale the Hermite polynomials
in Fig. 2.14a to

pD(x) := HeD(x)/
√
D! . (2.54)

The full transformation function is then a linear combination of the basis functions
pD where the Euclidean norm of the vector of expansion coefficients t∗D sets the energy
scale for the resulting DOS.

23For the two different definitions of the Hermite polynomials with Hn(x) = 2n/2Hen(
√

2x) see,
e.g., Abramowitz and Stegun (1972).
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Figure 2.14: a) Rescaled Hermite polynomials pD(x) = HeD(x)/
√
D! forming the basis

set in expansion (2.52) of the generalized dispersion for small order D. b) Dual basis, i.e.,
same curves multiplied by ρhc as in (2.55). The legend in b) applies to both graphs.

The evaluation of the hopping matrix elements

t∗D =
1√

2πD!

∞∫

−∞

dεF(ε) HeD(ε) e−ε
2/2 =

∞∫

−∞

dεF(ε) pD(ε) ρhc(ε) , (2.55)

where F(x) is yet unknown [to be obtained by numerical inversion of (2.61)], gener-
ically requires numerical integration. As shown in Fig. 2.14b, the kernel pD(ε)ρhc(ε)
falls off exponentially with increasing |ε| for fixed hopping range D. Due to this
fact and due to the increasingly oscillatory behavior, the matrix elements t∗ can be
expected to fall off rapidly with D →∞ for any monotonic (or, weaker, a reasonably
smooth) transformation function F .

Transformation Function F(ε), DOS, and Fermi Velocity

For a given transformation function F(x), we can obtain the DOS by transforming
the corresponding δ-functions in (2.1),

ρ(ε) =

N(ε)
∑

i=1
F(ε̃i)=ε

1

F ′(ε̃i)
ρhc(ε̃i) , (2.56)

(N(ε) is the multiplicity of solutions of the equation F(ε̃) = ε) which simplifies to

ρ(ε) =
1

F ′(F−1(ε))
ρhc(F−1(ε)) (2.57)
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for a monotonic (i.e., invertible) function24 F(x). In order to solve for F(x) we form
the integral

ε∫

−∞

dε′ρ(ε′) =

ε̃∫

−∞

dε̃ ′ρhc(ε̃ ′); ε = F(ε̃) , (2.58)

which leads to

R(F(ε̃)) = erf(ε̃/
√

2), R(ε) := 2

ε∫

−∞

dε′ρ(ε′)− 1 . (2.59)

We obtain

F(ε̃) = R−1(erf(ε̃/
√

2)) ⇔ F−1(ε) =
√

2 erf−1(R(ε)) (2.60)

or, summarizing,

F−1(ε) =
√

2 erf−1

(

2

ε∫

−∞

dε′ρ(ε′)− 1

)

. (2.61)

This concludes our presentation of the general algorithm for constructing a tight-
binding Hamiltonian, i.e., hopping matrix elements, from a given DOS in d = ∞
based on ideas developed by van Dongen (2001).

For later use we also evaluate the Fermi velocity, vk. From (2.57) and (2.60) we
have

F ′(F−1(ε)) =
ρhc(
√

2 erf−1(R(ε)))

ρ(ε)
(2.62)

which we can use for computing

vk = ∇F(εhc
k ) = F ′(F−1(ε))vhc

k (2.63)

by numerical integration and application of the inverse error function. As will be
discussed in detail in subsection 2.4.1 and chapter 4, the behavior of the squared
Fermi velocity 〈|vk|2〉(ε) := ρ̃(ε)/ρ(ε) [cf. definitions (2.1) and (2.2)] dramatically
changes from that observed in the hc lattice: for any nontrivial transformation it
is no longer effectively constant but depends strongly on energy. In particular, the
Fermi velocity vanishes at the band edges as physically required in any dimension.

A practical application of the general dispersion formalism proceeds as follows
from a given target DOS ρ(ε):

1. compute F−1(ε) using (2.61)

2. invert numerically or analytically to obtain F(ε)

3. evaluate transport properties, e.g., 〈|vk|2〉(ε) or ρ̃(ε) using (2.62) and (2.63)

24Here and in the following, F−1 denotes the functional inverse, not the fraction 1/F .
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4. optionally: determine microscopic model parameters, i.e., the hopping matrix
elements t∗D using (2.55)

The only choice inherent in this procedure beyond the usual assumptions for large
dimensions is contained in step 1 which by construction produces a monotonic trans-
formation function F .

Example: Flat-band System

One interesting limiting case of a monotonic transformation function which we can
treat analytically is the step function F(x) = 2Θ(x)− 1 corresponding to a flat band
DOS, ρ(ε) = (δ(ε− 1) + δ(ε+ 1))/2. Due to the nonanalytic step at ε = 0 we expect
the decay of the hopping matrix elements t∗D to be much slower than in generic cases,
at least for monotonic F . Using the identity

x∫

0

dy e−y
2/2Hen(y) = Hen−1(0)− e−x

2/2Hen−1(x) (2.64)

for x = ∞ and He2n(0) = (−1)n(2n− 1)!!, He2n+1(0) = 0 we can evaluate (2.55) for
the case at hand (trivially, t∗2n = 0):

t∗2n+1 =
2

√

2π(2n+ 1)!

∞∫

0

dεHe2n+1(ε) e−ε
2/2 (2.65)

= (−1)n
√

2

π

(2n− 1)!!
√

(2n+ 1)!
(2.66)

n→∞−→ (−1)n(πn)−3/4 . (2.67)

The asymptotic form, obtained by applying the Stirling formula and retaining only
leading powers of n, is accurate to within 1% for n > 30. As expected, t∗2n+1 falls
off slowly; the power −3/4 is only slightly smaller than the threshold value −1/2
required for the convergence of the sum

∑

D t
∗
D

2. Correspondingly, the transformation
function converges only slowly to its limiting form. Both the hopping matrix elements
and the transformation functions, corresponding to truncated series expansions with
D ≤ 2N+1, are shown in Fig. 2.15. We do not attempt to calculate truncation effects
for the DOS for this toy model which is complicated due to the many branches formed
by the oscillatory truncated transformation functions. Still, the main features of the
DOS for a model with truncated hopping range are clear: the two δ-peaks (of the
Dmax = ∞ model) are broadened with a potentially irregular shape, while a finite
density of states remains at ε = 0 for finite maximal hopping range. Furthermore, we
can read off from (2.67) and (2.71) that the gap develops very slowly for Dmax →∞
with ρ(0) ∝ D

−1/2
max .
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Figure 2.15: Hopping matrix elements corresponding to a flat DOS as given by (2.65).
Solid lines: asymptotic form (2.67). Inset: transformation function as obtained from the
truncated series with D ≤ Dmax = 2N + 1.

2.4 Redefinition of the Bethe Lattice

In this section, we will apply the new formalism developed in Sec. 2.3 to the Bethe
semi-elliptic DOS as given by (2.24) in order to determine a corresponding tight-
binding Hamiltonian defined on the hypercubic lattice with the same local properties
as the Bethe lattice (with NN hopping) in the limit d → ∞. For the purpose of
DMFT calculations, we can regard the new model as a redefinition of the Bethe
lattice, since all properties which could rigorously be defined and calculated on the
original Bethe tree are unaffected. In addition, properties which are not well-defined
on the Bethe lattice such as transport properties are well-defined for the new model
which has the full hypercubic symmetry.25 Furthermore, these transport properties
can be computed analogously to the hypercubic case which is the only case for which
rigorous derivations have been previously published.

In the following, we will first derive and briefly characterize the new model Hamil-
tonian with semi-elliptic DOS and then discuss the behavior of the Fermi velocity
in this model, a central result of this section. This will enable us to compute the
corresponding optical conductivity in Sec. 4.4. Having demonstrated the usefulness
of our approach, we will critically review possible shortcomings by studying the ef-
fects of truncation of the hopping range and of finite dimensionality in the context
of its application to the Bethe DOS. The application of the method to the asymmet-
ric model DOS (2.27) will illustrate the effects of asymmetry and allow us to make

25We note that in a simpler general scheme, transport properties can be defined and computed
for arbitrary lattice models in d = ∞ when these are periodically stacked in one extra dimension
(see Sec. 4.4). This procedure, however, leads to a highly anisotropic model.
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contact with a related approach.

2.4.1 Model in d = ∞

A practical application of the theory outlined in Sec. 2.3 always proceeds in two steps:
first, one has to find the energy transformation function F which relates the “target”
DOS to the DOS of the hypercubic lattice [cf. (2.57)] and suffices for the computation
of all transport related properties discussed in this work. In a second step one may
fully determine the underlying microscopic tight-binding model by computing the
corresponding scaled hopping matrix elements.

In order to determine the inverse of the transformation function via (2.60), we
need to compute the function R defined in (2.59) in terms of an integral over the
DOS.26 Using (2.24) for unit variance, R can be obtained in closed form,

R(ε) = −1 +
2

π

ε∫

−2

dε′
√

1− ε′2/4

=
1

π

(

ε
√

1− ε2/4 + 2 sin−1(ε/2)
)

. (2.68)

Since we defined the function F to be smooth and monotonic, it can easily be ob-
tained from F−1(ε) =

√
2 erf−1(R(ε)) using numerical root-finding algorithms. The

transformation function shown as solid line in Fig. 2.16a is monotonic, antisymmetric,
and smoothly approaches an asymptotic value of +2 (−2) for very high (low) energies
ε̃. Keeping in mind that F was defined as a mapping function which when applied
to the hc DOS (i.e., energy levels with a Gaussian distribution function) yields the
target DOS, we see that the boundedness of F guarantees sharp band edges, while
the linearity at small energies with a slope greater than one flattens out the central
part of the DOS compared to the hc case [cf. (2.71)]. Slight variations of the trans-
formation functions only lead to a slight redistribution of spectral weight. This can
be illustrated by replacing the (analytically inaccessible) transformation function F
by a hyperbolic tangent,

F(ε̃) ≈ a tanh

(√
π

2a
ε̃

)

; a ≈ 2.176, (2.69)

where the coefficients were chosen subject to the requirements that the corresponding
DOS has unit variance and that it agrees with the Bethe DOS for |ε| → 0. Due to
the boundedness we again obtain sharp band edges, now with finite slopes; otherwise
the “tanh” DOS is hardly distinguishable from the semi-elliptic Bethe DOS, as seen
in Fig. 2.16b.

In order to determine the microscopic model, we have to apply (2.55) to the
numerically evaluated transformation function F . As shown in Table 2.1, the scaled
hopping matrix elements fall off exponentially fast – only a fraction 10−3 of the total
energy variance arises from hopping amplitudes beyond 3rd-nearest neighbors and

26Note that R(µ) = 2n(µ)− 1 when n is the electron filling for a chemical potential µ at T = 0.
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Figure 2.16: Transformation function ε = F(ε̃) for the semi-elliptic Bethe DOS: numer-
ically exact result and approximation by a hyperbolic tangent according to (2.69). The
inset shows corresponding DOSs [cf. (2.57)] in comparison to the Gaussian DOS of the hc
lattice.

D t∗D
∑D

n=1 t
∗
n
2 D t∗D

∑D
n=1 t

∗
n
2

1 0.98731 0.974773 9 0.00343 0.999999
3 -0.15353 0.998345 11 -0.00108 1.000000
5 0.03893 0.999861 13 0.00033 1.000000
7 -0.01125 0.999987 15 -0.00011 1.000000

Table 2.1: Leading scaled hopping matrix elements corresponding to a semi-elliptic Bethe
DOS. The columns consisting of partial sums indicate rapid convergence of the series: only
a fraction 1 −∑D

n=1 t
∗
n
2 of the variance arises from hopping terms beyond Dth neighbors.

The mean squared hopping distance is
∑∞

D=1D t∗D
2 ≈ 1.05406.

only a fraction 10−6 results from hopping beyond 9th-nearest neighbors. Since such
a short average range is certainly within physical limits for any itinerant system, our
model seems a no less natural description for systems involving narrow tight-binding
orbitals than the Hubbard model (with only NN hopping) itself. The situation would
be different if we had found slow algebraic decay of the hopping amplitudes like we
have seen for the toy flat band example, (2.67), which made the latter appear rather
unphysical.

Using (2.62) and (2.63), we can compute the averaged squared Fermi velocity
〈|vk|2〉(ε), where for each value of ε the average is taken over all momenta k with
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Figure 2.17: Averaged squared Fermi velocity of the isotropic lattice model with Bethe
DOS (solid line). As required physically, it vanishes at the band edges. This has to be
contrasted with the constant value used in calculations so far which is only exact for the
hc lattice. Also shown is the parabolic form proposed by Chung and Freericks (1998a).

εk = ε in closed form for unit lattice spacing a = 1:27

〈|vk|2〉(ε) =
π

2(1− ε2/4) exp



−2

(

erf−1
(ε
√

1− ε2/4 + 2 sin−1(ε/2)

π

)
)2


 (2.70)

Here, we have used the fact that 〈|vk|2〉(ε) is effectively constant (and equals 1 for
unit variance and lattice spacing) in the hypercubic case. The result, shown in
Fig. 2.17, has all the qualitative features expected for this observable in any dimen-
sion: 〈|vk|2〉(ε) is maximal near the band center, strongly reduced for large (absolute)
energies and vanishes at the band edges: states at the (noninteracting) band edge
do not contribute to transport. For the hc lattice, the band edges are at ±∞, so
that a constant 〈|vk|2〉(ε) is somewhat pathological, but at least consistent. This
consistency is lost when a formalism derived for the hc lattice is applied to the Bethe
DOS. While a more complete discussion of this point has to be postponed to chapter
4, we note that this problem (which had otherwise been ignored in the literature)
led Freericks to propose the parabolic form28 also shown in Fig. 2.17. The resulting
computation of the optical conductivity was the first one to go beyond the hc lattice

27More formally, we may use equations (2.1) and (2.2) to define 〈|vk|2〉(ε) := ρ̃(ε)/ρ(ε).
28One may ask if one can find any model for which |vk|2 shows this behavior. Using our formalism,

namely (2.63), we obtain a differential equation for the energy transformation function, |F ′(ε̃)| =
√

4−F2(ε̃), which is solved by F(ε̃) = 2 sin(ε̃ + ε̃0). This is by no means a monotonic function,
however, which violates the assumption under which it was derived. Therefore, we conclude that the
behavior assumed by Freericks cannot occur for the class of tight-binding Hamiltonians considered
within our method.
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Figure 2.18: a) Transformation function ε = F(ε̃) for the semi-elliptic Bethe DOS: ap-
proximations obtained by truncation of the hopping range in (2.52) to 3rd, 5th, 7th, and 9th

neighbors (rescaled to unit variance) in comparison with the exact function. b) Derivative
F ′(ε̃); its zeros lead to singularities in the corresponding DOSs.

(Chung and Freericks, 1998a). Evidently, our result deviates even more strongly from
a constant (having zero slope at the edges) than Freericks’ form. The most important
difference, however, is that our approach identifies (for the first time) a model with
semi-elliptic DOS for which all transport properties are well-defined. Therefore, we
can use DMFT calculations performed for a semi-elliptic DOS for the computation of
an isotropic optical conductivity in chapter 4 without ignoring the energy dependence
of 〈|vk|2〉(ε) or resorting to heuristic approaches.

2.4.2 Truncating the Hopping Range

By construction, the DOS of our tight-binding model is exactly semi-elliptic when
all hopping matrix elements are taken into account, i.e., when the full series (2.52)
contributes to the dispersion. Since the limit of an infinite hopping range implies
infinite dimensionality (cf. footnote 5 on page 30) we cannot directly study the effect
of finite dimensionality on the full model. Instead, we will first discuss the effects
of a truncated hopping range in d = ∞ before we present the DOS of a truncated
model, evaluated in finite dimensions.

Figure 2.18a shows approximations to the transformation function ε = F(ε̃) in
comparison with the exact form. The finite-order approximations represent trunca-
tions of (2.52) with D ≤ Dmax in which the hopping matrix elements, obtained from
application of (2.55) to the numerically exact transformation function, have been
rescaled to

∑Dmax

D=1 |t∗D|2 = 1. Since the effect of the transformation function F on
the level of the DOS is to just shift the energy levels away from their position in the
NN-hopping hypercubic case and since there is only exponentially small weight in



58 2. Lattice and Density of States

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

ρ

ε

Dmax = 3

Dmax = 5

Dmax = 7

Dmax = 9

exact 0

0.1

0.2

0.3

1.6 1.8 2 2.2

Figure 2.19: DOS for the tight-binding model truncated at different maximum hopping
range Dmax compared with the semi-elliptic DOS of the full model. Inset: same curves,
broadened by a Gaussian of width 0.01.

the hc DOS at high energies (about 4.6% for |ε| > 2 and 0.3% for |ε| > 3, respec-
tively), the high-energy part of the transformation function becomes quantitatively
irrelevant. In Fig. 2.18a, the truncation error is seen to be small already in the rele-
vant range of low and intermediate energies for 5th order and almost invisible for 9th

order. Therefore, we may also expect good overall agreement on the level of the DOS
for the truncated model. Note, however, that truncated transformation functions
need not, in general, be monotonic; they have extrema for Dmax = 3, 7, 9 while the
transformation function for Dmax = 5 is very close to a saddle point (see derivatives
F ′(ε̃) shown in Fig. 2.18b). Thus, on the level of the DOS, the truncation error will
be large pointwise near the resulting singularities even though the associated weight
is small.

This is exactly what is seen in in Fig. 2.19: the DOS of the truncated model
becomes singular at the band edges with rapidly decreasing weight for increasing
Dmax. The good overall agreement with a semi-elliptic form can be further improved
for Dmax = 7 and Dmax = 9 by broadening the curves with a Gaussian of width
0.01 in order to mimic the effect of a finite imaginary part of the self-energy caused
by interactions (see inset). Thus, practical DMFT calculations should not be able
to distinguish between a Bethe DOS and our model, truncated at Dmax ≥ 9. As
we will see below, the effects of truncation are even less severe when the model is
applied in finite dimensions. Note that in the symmetric case and for a monotonic
transformation function (i.e., when F(0) = 0), the DOS at the symmetry point is
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fully determined by the first derivative of the transformation function at the origin,

1

ρ(ε = 0)
=
√

2πF ′(0) =
√

2π
∞∑

n=0

t∗2n+1(−1)n
(2n+ 1)!!
√

(2n+ 1)!
. (2.71)

This series is quickly converging for the tight-binding model corresponding to a Bethe
DOS as seen in Fig. 2.18 and Fig. 2.19.29

2.4.3 Finite Dimensionality

After having verified that the properties of the tight-binding model with semi-elliptic
DOS derived in this section are robust with respect to truncation, we can now study
the robustness with respect to application in finite dimensions and thereby distin-
guish generic from more artificial features. For this purpose, we explicitly calculate
the dispersion for the redefined Bethe model [i.e., the model defined by (2.68)], trun-
cated at 3rd or 5th order hopping. Here, we evaluate BD(k) as defined in (2.48)
without resorting to any large-d approximations for the involved sums or the num-
ber of equivalent hopping terms; in particular, the approximation in (2.44) is not
used.30 In the necessary summations, the exclusion of terms with equal indices poses
a combinatorial problem which can be solved iteratively or as a linear system of
equations. In order to illustrate the basic considerations, we show how the sum-
mation restrictions are replaced for D = 2, 3:

∑

i6=j =
∑

ij (1− δij) ;
∑

i6=j 6=k =
∑

ijk (1− δij − δik − δjk + 2δijk), where the generalized δ-function equals 1 if all in-
dices are equal and is 0 otherwise. For the sake of brevity, we will in the following
state the results for AD(k) := (2/d)−d/2BD(k), from which the exact d-dimensional
dispersion can be obtained in the form

εD(k) = t∗D
2D/2

D!
√
(
d
D

)
AD(k) (2.72)

and which agrees with (2.47) in the limit dÀ D. The coefficient functions read

A1(k) =
d∑

α=1

cos(kα); A2(k) =
(∑

α

cos(kα)
)2

−
∑

α

cos2(kα)

29Note that a gapped DOS as in the case of the flat band DOS considered above can only arise
when the sum in (2.71) diverges which means that the hopping matrix elements t∗n decay more
slowly than n−5/4.

30We keep, however, the selection of hopping terms defined at the beginning of this section, i.e.,
do not consider extended hopping along the cartesic axes.
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Figure 2.20: DOS of the isotropic tight-binding model with semi-elliptic DOS, truncated
at 3rd order and applied in finite dimensions.

A3(k) =
(∑

α

cos(kα)
)3

− 3
∑

α

cos2(kα)
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α

cos(kα) +
∑

α

cos3(kα)

A4(k) =
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α

cos(kα)
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− 6
(∑

α
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cos(kα)− 6
∑

α

cos4(kα)
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(∑

α

cos(kα)
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∑

α
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∑
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cos(kα)
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)2∑
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cos(kα)
(∑

α

cos2(kα)
)2

−10
(∑

α

cos(kα)
)3∑

α

cos2(kα) + 24
∑

α

cos5(kα) .

The resulting DOSs for various dimensions and a hopping range truncated at
Dmax = 3 have been evaluated by Monte Carlo sampling of the momentum integrals
and are shown in Fig. 2.20. As expected, the singularities in the DOS observed for
d = ∞ are smoothed out in finite dimensions, so that the agreement with a Bethe
DOS is even improved. The value at ε = 0 is slightly too high (which is accidentally
offset by a finite-d error for d = 5). For even lower dimensions d = 3 and d = 4
(not shown, cf. subsection 4.4.5), the shape of densities of states is dominated by
Van-Hove singularities rather than the influence of 3rd-nearest–neighbor hopping.

Both the overall deviations from the Bethe DOS and the dimensional dependence
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Figure 2.21: DOS of the isotropic tight-binding model with semi-elliptic DOS, truncated
at 5th order and applied in finite dimensions. Accidentally, the curve for d = 10 best
approximates the semi-elliptic Bethe DOS.

are much smaller when the hopping range is extended to 5th-nearest neighbors as
shown in Fig. 2.21. It is remarkable that a reasonable approximation to the Bethe
DOS is obtained even for d = 5, although the underlying tight-binding model was
derived for d À Dmax. While the dimensional dependence is expected to further
decrease significantly when the hopping range is extended to Dmax ≥ 9, we did not
find it worth the effort to extend these finite-dimensional studies beyond Dmax = 5
after having successfully demonstrated the overall robustness of the method. The
weak dimensional dependence seen in Fig. 2.21 should be contrasted with the very
strong dependence of the DOS on dimensionality observed for other lattice types,
e.g., for the fcc lattice shown in Fig. 2.7.

One useful feature of our method is that (for a monotonic transformation func-
tion) the energy minimum remains associated with k ≈ 0 and the energy maximum
associated with momenta k ≈ Q. This can be illustrated in finite dimensions, where
these vectors (which are nongeneric31 in the limit Z → ∞) still have finite weight.
In Fig. 2.22a and Fig. 2.22b we show the full DOS of the hc lattice and of our model
truncated at 5th order for dimension d = 10, respectively (dotted lines). The solid
and dashed lines in the same figures indicate partial DOSs which were obtained by
taking the sum in (2.1) either only for momenta with |k| < 2d, |k−Q| < 2d, or with
|k|/〈|k|〉 < 0.15. Here, the average length of a momentum vector is approximated by
its asymptotic for Z → ∞, 〈|k|〉 ≈ π

√

d/3 (cf. App. A.2). Evidently, generic states
of average length are least affected by the transformation. Therefore, our model may

31For a discussion of generic versus nongeneric momenta, see App. A.2.
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Figure 2.22: Partial DOSs a) of the hc lattice and b) of the 5th order truncation of the
redefined Bethe lattice in d = 10 (solid and dashed lines) in comparison with the full DOSs
(dotted lines). The restriction to momenta with |k| ≈ 0, |k| ≈ 〈|k|〉, and |k −Q| ≈ 0 is
explained in the text.

be regarded as a minimal modification of the NN-hopping hc lattice for which the
DOS becomes semi-elliptic.

2.4.4 Application to Asymmetric Model DOS

It should be evident that our method is by no means restricted to the Bethe DOS or to
a symmetric DOS in general. In fact, it gives a natural description for all nonsingular
single-band DOSs. In order to illustrate the application to an asymmetric case, to
draw a connection to earlier work (Wahle et al., 1998), and to compare with estimates
for hopping amplitudes obtained within an alternative scheme (Kollar, 1998), we
also applied our formalism to the asymmetric model DOS (2.27) which contains the
asymmetry parameter −1 ≤ a ≤ 1 and coincides with the semi-elliptic Bethe DOS
for a = 0.

As seen in Table 2.2, slight asymmetry (a = 0.5) leaves the scaled hopping matrix
elements corresponding to odd hopping range D = 2n + 1 almost invariant while
the even range hopping becomes relevant. The energy shift (i.e., finite first mo-
ment) implicit in (2.27) for |a| > 0 gives rise to a finite on-site amplitude t20 which
can be evaluated using (2.55) for D = 0 just like for finite hopping range D > 0.
With increasing asymmetry (a = 0.9 and a = 0.98, cf. Fig. 2.13), the even range
hopping elements become more dominant and also the decay is slower than for the
symmetric Bethe DOS. Even an asymmetry (a = 0.98) strong enough to allow for
ferromagnetism in the pure Hubbard model (Wahle et al., 1998) thus naturally fits
into the present scheme. However, an application of the method (with a monotonic
transformation function) would be questionable for the singular case a = 1, which
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a = 0.5 a = 0.9 a = 0.98

D t∗D
∑D

n=1 t
∗
n
2 t∗D

∑D
n=1 t

∗
n
2 t∗D

∑D
n=1 t

∗
n
2

0 -0.26795 0.000000 -0.62679 0.000000 -0.81735 0.000000

1 0.98364 0.967540 0.96671 0.934524 0.95139 0.905141
2 0.08255 0.974354 0.19413 0.972212 0.25457 0.969945
3 -0.15137 0.997267 -0.14143 0.992213 -0.13252 0.987505
4 -0.03143 0.998255 -0.07444 0.997755 -0.09835 0.997177
5 0.03775 0.999680 0.03236 0.998802 0.02759 0.997938
6 0.01273 0.999842 0.03046 0.999730 0.04063 0.999589
7 -0.01062 0.999955 -0.00776 0.999790 -0.00528 0.999617
8 -0.00534 0.999983 -0.01294 0.999957 -0.01748 0.999923
9 0.00310 0.999993 0.00160 0.999960 0.00032 0.999923

10 0.00229 0.999998 0.00566 0.999992 0.00777 0.999983
11 -0.00091 0.999999 -0.00012 0.999992 0.00053 0.999983
12 -0.00101 1.000000 -0.00253 0.999998 -0.00355 0.999996
13 0.00024 1.000000 -0.00018 0.999998 -0.00050 0.999996
14 0.00045 1.000000 0.00116 1.000000 0.00167 0.999999
15 -0.00006 1.000000 0.00016 1.000000 0.00032 0.999999

Table 2.2: Leading hopping matrix elements corresponding to the generalized asymmetric
model DOS (2.27) with parameter a (cf. Table 2.1). The columns which consist of partial
sums indicate rapid convergence of the corresponding dispersion and DOS: only a fraction
1−

∑D
n=1 t

∗
n
2 of the variance arises from hopping terms beyond Dth neighbors. The “hop-

ping” term with range D = 0 denotes an on-site energy, i.e., the first moment of the energy
distribution.

corresponds to a Bethe lattice with only NNN hopping, as we have shown in Sec. 2.2.
We would have to overcome numerical stability issues just to reproduce a square-
root singularity at the lower band edge which we regard as an artifact of d =∞ (in
complete analogy to the situation for the fcc lattice).

Earlier attempts to link the asymmetric model DOS (2.27) to some microscopic
tight-binding model (Wahle et al., 1998; Kollar, 1998) have led to a related, but quite
different construction scheme, which can be applied in low and infinite dimensions
(Kollar, 2002). The straightforward application in d = 1 to the DOS (2.27) with
a = 0.98 yields scaled hopping matrix elements which are well approximated by
t∗2n+1 = 0.67 (2n)−1.6, t∗2n = −0.54 (2n)−1.6 for small hopping range and decay as
tD ∼ D−5/3 for large range (Kollar, 1998). When generalized to higher dimensions,
Kollar’s construction is based on a dispersion ε(k) = g(|k|) (for some function g)
which is spherical except at the boundaries of the Brillouin zone. We regard it more
as a proof of existence of a dispersion for a given DOS in arbitrary dimension than as
a workable scheme for the following reasons: Most importantly, the above spherical
form for the dispersion implies discontinuities in the Fermi velocity at the boundaries
of the Brillouin zone for d > 1 which, if taken seriously, makes the computation of
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transport properties pointless. Due to the violation of symmetry between k = 0 and
k = Q, concepts like perfect nesting become meaningless. Additionally, the hopping
is dominantly along the axes and is very slowly decaying (as tD ∼ D−2, only slightly
faster than in the one-dimensional case). Thus, our approach appears much more
physical in higher dimensions which is not surprising since it was derived for the
large-d limit.32

2.5 Conclusion

In this chapter, we have carefully studied the relationships between lattice types,
densities of states, and magnetic frustration in high dimensions. Evaluating Brillouin-
zone integrals by Monte Carlo sampling, we have computed the (noninteracting) DOS
of the hypercubic lattice with hopping to nearest and/or next-nearest neighbors as
well as the DOS of the hyperdiamond lattice (see App. B) in low, intermediate, and
high dimensions. Thereby and by comparing with the corresponding analytical d =∞
results we have distinguished generic features from features that are artifacts of the
d = ∞ limit. In particular, we have established that for regular lattices, magnetic
frustration is generically associated with an asymmetric DOS or with off-diagonal
disorder.

We have then characterized the Bethe “lattice” which is a tree in the sense of
graph theory rather than a regular lattice. We have pointed out that a semi-elliptic
DOS implies the absence or cancellation of all self-avoiding loops in a renormal-
ized perturbation expansion for any lattice. By computing moments of the DOS
of the Bethe lattice with hopping to nearest and next-nearest neighbors (NNN), we
have contradicted an earlier claim that NNN hopping should leave the DOS invari-
ant. Furthermore, we have presented the first (analytic) calculation of the (strongly
asymmetric) DOS of the Bethe lattice with only NNN hopping.

We have developed a general method of constructing a tight-binding Hamiltonian
which yields a given, arbitrary DOS in the limit of infinite dimensions. This method
allows for the computation of all physical quantities that can be defined for the
corresponding finite-dimensional model. Such a method is particularly useful in the
context of the DMFT, where nonlocal properties can be derived by combining an
essentially local property of the interacting system with a nonlocal property of the
noninteracting system. Examples for such properties are the optical conductivity
(which we will consider in chapter 4) and susceptibilities.

By applying the new general-dispersion formalism to the semi-elliptic “Bethe”
DOS, we have found the first regular lattice with a bounded DOS in high dimensions,
thereby removing one of the major artifacts previously regarded as inherent to the
limit d → ∞. We have verified that versions of this model with truncated hopping
ranges still give reasonable descriptions. While the DOS is then no longer strictly
bounded, the weight associated with long-frequency tails is suppressed exponentially
with the number of hopping terms and becomes negligible for numerical purposes

32In contrast, only Kollar’s construction can be applied in very low dimensions, in particular in
one dimension where it becomes exact.
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when hopping to 7th or 9th nearest neighbors is included. For the full model, the
average squared hopping distance is 1.054, i.e., surprisingly close to the value 1 valid
for the usual hypercubic lattice. The convergence of the method (with the number of
nonzero hopping matrix elements and with dimensionality) is similarly good in terms
of the distribution of spectral weight for other sufficiently smooth target DOSs. The
fact that exactly vanishing even-range hopping matrix elements are predicted for any
symmetric DOS follows necessarily for any consistent approach and is not specific to
our method.

With the general dispersion method developed in Sec. 2.3, we have singled out
one route to high dimensions with a series of very favorable properties (specializing
on the case of a monotonic transformation function): (i) The approach does not re-
quire large long-range hopping amplitudes. (ii) Generically, the DOSs corresponding
to finite-d versions of the computed tight-binding model depend only weakly on di-
mensionality. (iii) The topology of the Fermi surface remains hypercubic-like at all
fillings in arbitrary dimensions with the energy minimum of εk at k = 0 (and the
maximum at k = Q). (iv) The full hypercubic symmetry is retained. (v) For the first
time, transport properties for the Bethe DOS can be calculated in a fully consistent
way (including an f -sum rule) without resorting to anisotropic models. (vi) The
derived equations can be used as a heuristic approach for transport calculations in
finite dimensions when only the DOS is known (e.g., from LDA calculations).
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Chapter 3

Mott Metal-Insulator Transition in
the d → ∞ Hubbard Model

One of the most fascinating phenomena of strongly correlated electron systems is the
interaction-induced metal-insulator transition. Such a transition is fundamentally
different from filling-induced transitions between metals and band insulators since it
cannot be understood in terms of (effectively) noninteracting electrons. Particularly
challenging is the Mott transition, the interaction-induced transition between a para-
magnetic metal (PM) and a paramagnetic insulator (PI).1 As this transition does not
break the translational symmetry of the lattice, its description needs to take strong
electronic correlations into account. For this reason, proximity to a Mott transition
may be even regarded as a defining property of strongly correlated electron systems.
The explanation and modeling of the Mott transition is a long-standing important
and difficult problem of condensed matter physics (Mott, 1968; Mott, 1990; Geb-
hard, 1997; Imada, Fujimori, and Tokura, 1998).

In this chapter, we present studies of the Mott metal-insulator transition (MIT)
occurring in the infinite-dimensional half-filled Hubbard model. Specifically, results
will be obtained for the Bethe lattice, i.e., for a semi-elliptic noninteracting DOS.
In order to observe the transition of interest in the paramagnetic phase, antiferro-
magnetism is suppressed in the calculation, which corresponds to treating the lattice
as fully frustrated. For this model, the Mott transition occurs for an interaction
U slightly larger than the bandwidth W (see below). Consequently, perturbative
methods are not adequate for its description and may only a posteriori be useful for
comparison. We will argue later that even numerically exact methods such as QMC
or ED may become problematic in the transition region if not used with great care.
In fact, one of the achievements of this thesis is the settlement of a controversy about
the qualitative shape of the MIT phase diagram of the specified model. Therefore,
our treatment will have to at least partially follow the historical development.

In Sec. 3.1 we give an experimental motivation and discuss the applicability of
the model. In Sec. 3.2, we discuss strategies for pinpointing and characterizing phase

1Interactions can alternatively drive the transition of a metal into an insulating ordered state,
namely an antiferromagnetic Néel low-temperature phase (AFI); the AFI, however, may be under-
stood as an effective band insulator in the halved Brillouin zone (see subsection 1.1.4).



68 3. Mott Metal-Insulator Transition in the d→∞ Hubbard Model

transitions within the DMFT and specify potentially useful observables. A first look
at the history of the phase diagram is given in Sec. 3.3 where it will be seen that early
QMC studies collaboratively performed in this work correctly captured some aspects
of the phase diagram while failing in describing others. In Sec. 3.4, we explain
the reasons for this failure and correct a fundamental problem of the QMC code
previously used within our group. In addition, we quantify the remaining numerical
errors and present further improvements of the QMC algorithm and code developed
as part of this thesis.

Accurate phase boundaries are then determined in Sec. 3.5. Here, we show that
the total internal energy (per site) is best suited for distinguishing metallic from in-
sulating solutions, in particular in the extrapolation ∆τ → 0. The resulting phase
diagram is constructed and the controversy resolved in subsection 3.5.4. The obser-
vation of a coexistence region of metallic and insulating solutions generates the need
to determine the true thermodynamic phase transition line using free energy infor-
mation. Prior to this work, this task had seemed too complicated to be accomplished
on the basis of numerically exact techniques; even in the context of iterative pertur-
bation theory, results for this line had been contradictory. Using newly developed
schemes, we demonstrate in Sec. 3.6 how the first order phase transition line can
be located based on QMC simulations; using low-temperature thermodynamic infor-
mation and well-established numerical zero-temperature results, the thermodynamic
phase transition line is even extended down to zero temperature. The presentation of
the full phase diagram in subsection 3.6.3 is supplemented by a discussion of possible
scenarios for partially frustrated models in subsection 3.6.4.

Implications of the Landau theory of phase transitions for the convergence of
the DMFT iteration process and the suitability of the fitting functions introduced in
Sec. 3.5 are discussed in Sec. 3.7. In addition, we propose a new concept for computing
free energy differences by solving impurity models which are (in general) not solutions
of the DMFT equations. In the final section 3.8, local spectral functions are computed
using the maximum entropy method. These results provide additional insight in the
nature of the phase transition and will later be needed for the computation of the
optical conductivity in chapter 4.

3.1 Motivation

3.1.1 Experiment

Experimentally, metal-insulator transitions may be observed upon variation of tem-
perature and pressure for a given sample or as a function of doping within a class
of materials. Since the induced variations of energy scales are relatively small, only
few classes of materials, such as the oxides of vanadium, titanium, and chrome as
well as NiSe2−xSx display a correlation-induced MIT (Heine and Mattheiss, 1971;
Mattheiss, 1972; Mott, 1990). The compound La1-xSrxTiO3, which will be treated
within LDA+DMFT in chapter 5, falls into this group; among the most promi-
nent and best characterized examples, however, is V2O3 (Rice and McWhan, 1970;
McWhan, Remeika, Rice, Brinkman, Maita, and Menth, 1971; McWhan, Remeika,
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Figure 3.1: a) High-temperature corundum lattice structure of V2O3: oxygen ions (empty
spheres) form an hcp lattice, vanadium ions or dopants (solid spheres) occupy 2/3 of the
octahedral vacancies. b) In leading order, the binding angle α determines the effective
hybridization between the vanadium sites.

Maita, Okinaka, Kosuge, and Kachi, 1973; Kuwamoto, Honig, and Appel, 1980; Bao,
Broholm, Carter, Rosenbaum, Aeppli, Trevino, Metcalf, Honig, and Spalek, 1993;
Bao, Broholm, Aeppli, Dai, Honig, and Metcalf, 1997; Bao, Broholm, Aeppli, Carter,
Dai, Rosenbaum, Honig, Metcalf, and Trevino, 1998).

V2O3 crystallizes in the corundum structure as schematically shown in Fig. 3.1a.
Here, the oxygen ions (formally O2−) form an hcp lattice while the vanadium ions,
formally V3+: [Ar](3d)2, fill two thirds of the octahedral vacancies. The asymmetry
in the occupation of the octahedral sites induces a distortion. Upon doping, Ti or
Cr ions replace a fraction of the V ions. While the dopants (formally isovalent to
V) only slightly influence the charge distribution, the lattice distortion of the doped
system changes significantly due to the different effective atomic radii. Consequently,
doping influences the angle of V-O-V paths (cf. Fig. 3.1b) just like the application of
external pressure.2 The potentially mobile electrons predominantly occupy orbitals
on the V sites (associated with the 3d shell) while O2− (in noble gas configuration)
may be modeled as chemically inert. The hybridization between the V orbitals via
the O sites and, thus, the effective bandwidth increases with increasing α.

Therefore, the experimental control over doping level and pressure may indeed
be characterized as a bandwidth control. Under the assumption that interactions
do not depend on substitution and pressure, the systems also qualify as interaction
controlled when the bandwidth is taken as unit of energies. One should be aware
of the fact that doping necessarily reduces the translational symmetry of the host
lattice: either the positions of dopants form a regular superlattice or they intro-
duce (predominantly offdiagonal) disorder. Both the modified interaction and the
introduced disorder could in principle provide for quite different mechanisms for the
metal-insulator transition.

One of the earliest accounts of the V2O3 phase diagram is reproduced in Fig. 3.2a

2Note that uniform pressure also increases the overlap by decreasing the distances between sites.
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(d1-d2LI ) hybridization (Uozumi et al., 1993). Cluster-
model analysis has revealed considerable weight of
charge-transfer configurations, d3LI ,d4LI 2, . . . , mixed into
the ionic d2 configuration, resulting in a net d-electron
number of nd.3.1 (Bocquet et al., 1996). This value is
considerably larger than the d-band filling or the formal
d-electron number n52 and is in good agreement with
the value (nd53.0) deduced from an analysis of core-
core-valence Auger spectra (Sawatzky and Post, 1979).
If the above local-cluster CI picture is relevant to experi-
ment, the antibonding counterpart of the split-off bond-
ing state is predicted to be observed as a satellite on the
high-binding-energy side of the O 2p band, although its
spectral weight may be much smaller than the bonding
state [due to interference between the d2→d1

1e and
d3LI →d2LI 1e photoemission channels; see Eq. (3.12)].
Such a spectral feature was indeed observed in an ultra-
violet photoemission study by Smith and Henrich (1988)
and in a resonant photoemission study by Park and
Allen (1997). In spite of the strong p-d hybridization
and the resulting charge-transfer satellite mechanism de-
scribed above, it is not only convenient but also realistic
to regard the d1-d2LI bonding band as an effective V 3d
band (lower Hubbard band). The 3d wave function is
thus considerably hybridized with oxygen p orbitals and
hence has a relatively small effective U of 1–2 eV (Sa-
watzky and Post, 1979) instead of the bare value U
;4 eV. Therefore the effective d bandwidth W becomes
comparable to the effective U : W;U . With these facts
in mind, one can regard V2O3 as a model Mott-Hubbard
system and the (degenerate) Hubbard model as a rel-
evant model for analyzing the physical properties of
V2O3.

The time-honored phase diagram for doped V2O3 sys-
tems, (V12xCrx)2O3 and (V12xTix)2O3 , is reproduced
in Fig. 70. The phase boundary represented by the solid
line is of first order, accompanied by thermal hysteresis
(Kuwamoto, Honig, and Appel, 1980). In a Cr-doped
system (V12xCrx)2O3 , a gradual crossover is observed
from the high-temperature paramagnetic metal (PM) to

FIG. 69. Photoemission spectra of V2O3 in the metallic phase
taken using photon energies in the 3p-3d core excitation re-
gion. From Shin et al., 1990.

FIG. 68. Corundum structure of V2O3.

FIG. 70. Phase diagram for doped V2O3 systems,
(V12xCrx)2O3 and (V12xTix)2O3. From McWhan et al., 1971,
1973.

1147Imada, Fujimori, and Tokura: Metal-insulator transitions

Rev. Mod. Phys., Vol. 70, No. 4, October 1998

Figure 3.2: Experimental realization of Mott metal-insulator transitions in V2O3 doped
with Cr or Ti. a) Phase diagram: transition temperatures as function of pressure and/or
doping level (McWhan et al., 1971). b) Resistivity (log scale) as a function of inverse
temperature (Kuwamoto et al., 1980).

where transition temperatures (vertical axis) are plotted as function of doping (up-
per horizontal axis) or pressure (lower horizontal axis). In this scaled version, both
horizontal axes may be regarded as indicating the effective pressure or bandwidth.
The low-temperature phase is seen to be antiferromagnetic and insulating for not
too high effective pressure. Upon increasing the temperature, the system becomes
paramagnetic and goes either into the PI or the PM phase. The latter two phases are
separated by a roughly straight first-order phase transition line ending in a critical
end point. Note that for ambient pressure the pure system is a metal which becomes
insulating upon doping with Cr, quite contrary to the behavior for band insulators.
In addition, the scaling law implicit in the figure makes disorder as the driving mech-
anism for localization of electrons less likely3 since the influence of Cr doping can
be offset by increased pressure which further supports the characterization of the
MIT as being interaction driven. Of fundamental interest is the question whether
the change in energy at the first-order transition line is of electronic origin. This
problem is obscured experimentally by a simultaneous isostructural transition, i.e., a
slight change of the lattice parameter at the MIT.

3While Anderson localization associated with diagonal disorder is, indeed, ruled out by the scaling
law, offdiagonal disorder might be quantitatively important. On the other hand, disorder is clearly
not an essential ingredient for a model description.
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Figure 3.2b shows the resistivity as a function of inverse temperature for various
levels of Cr doping. The lowest curve corresponds to the pure case, i.e., the vertical
dashed line in the phase diagram Fig. 3.2a. This curve displays only one kink, a
sharp increase of the resistivity by 7 orders of magnitude at the Néel temperature.
For sufficiently large doping, a second jump by some 2 or 3 orders of magnitude
appears at higher temperature (i.e., going left in the plot) which indicates the Mott
metal-insulator transition which is the subject of interest within this chapter.

3.1.2 Theory

A theoretical description of the V2O3 phase diagram should at least reproduce its
topology including the first-order Mott transition line. If such a description could
be found in terms of a purely electronic model, this would be a strong indication for
electronic correlations being the driving force behind the Mott transition. Lattice
degrees of freedom would, then, appear less important in this respect. While orbital
degrees of freedom certainly play an important role for V2O3, at least quantitatively
[see Held, Keller, Eyert, Vollhardt, and Anisimov (2001) and references therein], the
very essence of the Mott transition may already be captured qualitatively by the
half-filled single-band Hubbard model. This model is a likely candidate since its
paramagnetic phase is a (perfect) metal for U = 0 and an insulator for U = ∞. A
transition would be expected for U ≈ W if W is an appropriate measure of the free
bandwidth. For the usually considered case of NN hopping on a bipartite lattice,
however, the antiferromagnetic phase generically extends to high enough tempera-
tures that the evolution from metal to insulator as a function of U should occur as
a smooth crossover. This expectation is indeed an established fact for the Bethe
lattice as well as for the hc lattice with NN hopping in infinite dimensions (see be-
low) and is supported by recent QMC results for the simple cubic lattice in d = 3
(Staudt, Dzierzawa, and Muramatsu, 2000). Therefore, the Mott transition can only
be studied on the Hubbard model when the antiferromagnetic phase is suppressed.

The natural microscopic method of modeling magnetic frustration is the inclu-
sion of hopping terms to (at least) next-nearest neighbors. As discussed in chapter
2, frustration then generically implies an asymmetric DOS. DMFT results for the
hypercubic lattice with NN and NNN hopping are shown in Fig. 3.3a. Here, symbols
and interpolating lines indicate the Néel temperature as computed using QMC for
an increasing degree of frustration from top to bottom (Schlipf, 1998). Alternatively,
antiferromagnetism may be suppressed in analytical and in mean-field methods4 by
restricting solutions to the subspace with appropriate symmetries. For the semi-
elliptic Bethe DOS, this choice corresponds, e.g., to solving a fully disordered model
where the hopping terms obey 〈tij〉 = 0 and 〈t2ij〉 = t∗2/Z (cf. subsection 2.2.2). The
phase diagram of this “fully frustrated Bethe lattice” is shown in Fig. 3.3b as ob-
tained by Georges et al. (1996) within iterated perturbation theory (IPT). According
to this result, metallic and insulating solutions coexist at low temperatures over a

4Such a suppression is not possible in the context of QMC applied directly in finite dimensions.
For this method, the inclusion of NNN is not a practical alternative since it leads to the minus-sign
problem. Therefore, finite-dimensional QMC can hardly treat frustration at all.
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Figure 3.3: Magnetic and MIT phase diagrams for the Hubbard model. a) Néel tempera-
ture TN for the hc lattice with NN and NNN hopping (Schlipf, 1998). b) MIT scenario for
the fully frustrated Bethe lattice as computed within IPT (Georges et al., 1996). Here, a
first-order phase transition is observed for T < T ∗ at Uc(T ) (thick line) within the coexis-
tence region Uc1(T ) ≤ U ≤ Uc2(T ) (thin lines); a crossover region (shaded) extends above
T ∗. Crosses (connected by a dotted line) indicate TN for the unfrustrated Bethe lattice
(Rozenberg et al., 1994); the AF then hides the MIT within IPT.

wide range of interaction strengths Uc1(T ) ≤ U ≤ Uc2(T ); the coexistence region (nar-
row lines) extends up to T ∗

IPT ≈ 0.085.5 The shaded region at higher temperatures
indicates a crossover region.

Schlipf’s (1998) QMC calculations of the phase diagram for the hc lattice with
NNN hopping showed no traces of a first-order MIT. Even with only NN hopping,
no such transition appeared (for a calculation in the homogeneous phase). The
contradiction with Rozenberg et al.’s (1995) results was perfect when a first-order
MIT line could not even be found for the fully frustrated Bethe lattice at temperatures
significantly below the IPT critical temperature (see Sec. 3.3). Thus, new studies
became necessary which evolved into a project for this thesis. In this chapter, we
will almost exclusively consider the Bethe lattice in the homogeneous phase which is
enforced down to T = 0. Apart from being relevant on the physical grounds discussed
in this section, this model has evolved into a benchmark for the methods of solving
the DMFT. Since at least some of the same methods are used for multi-band models
and in combination with LDA, the verification of their reliability has consequences
far beyond the half-filled single band Hubbard model. The qualitative implications
of finite frustration will be discussed in subsection 3.6.4.

5Here, energies are scaled to unit variance of the DOS for both models.
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3.2 Characterization of Phase Transitions within

the DMFT

In this section, we will discuss how phase transitions can be found and character-
ized within the DMFT. In subsection 3.2.1, we focus on the general implications of
the mean-field character of the DMFT in connection with first-order transitions. A
particularly important aspect is the question how the numerical stability of solutions
in the iterative process is related to their thermodynamic (meta-) stability. This
problem had been neglected in the literature so far and is now solved for a particular
iteration scheme in subsection 3.2.2. Finally, we collect useful observables and discuss
their general behavior in subsection 3.2.3.

3.2.1 Transitions of First or Higher Order

In a thermal statistical ensemble, properties such as the (free) energy per particle,
average filling, or average double occupancy are defined in terms of traces over all
possible states. Therefore, the observables are well-defined functions of a complete set
of external parameters; for the Hubbard model on a given lattice (with unit variance
of the DOS) these parameters are the on-site interaction U , the temperature T , and
the chemical potential µ. More precisely, the free energy F is a continuous function
while its derivatives may be discontinuous at some hypersurfaces, i.e., lines in a 2-
dimensional subspace of parameters such as U and T . The discontinuities indicate a
phase transition; according to Ehrenfest, the order of the transition is defined as the
order of the first discontinuous derivative of F . In principle, the search for a phase
transition is, therefore, straightforward: sweeping through the parameter space, one
searches for jumps or kinks in the derivatives of F with respect to U or T , i.e., the
double occupancy D or (minus) the entropy S or related observables. This is the
usual practice, e.g., for QMC in finite dimensions.6

In contrast, in mean-field theories such as the DMFT, the ensemble average is
performed with the mean-field [here G(iωn), cf. subsection 1.2.3] as an additional
parameter which has to be determined self-consistently. The resulting fixed point
problem may have one or more solutions for each point in the original parameter
space. In regions of the phase space where only one solution is known to exist or
where the derivatives of F are found to be continuous, phase transitions can be
pinpointed just like in direct methods by testing for higher order derivative discon-
tinuities. If several solutions exist, however, the result of an iterative solution of the
fixed point equations will depend on the initialization. For sequential solutions on a
grid of phase points where the solution at one point initializes the iteration at the
neighboring point, the solution within the coexistence region then depends on the
sweeping direction: hysteresis occurs. For conserving approximations such as the
DMFT, the free energy can be generalized as a Ginzburg-Landau functional FGL of
the physical parameters plus the mean field which agrees with the true free energy

6A serious complication for such methods based on the solution of finite size clusters is, however,
the rounding of all phase transitions.
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Figure 3.4: Schematic dependence of the free energy functional on an order parameter ∆
near a first-order phase transition. a) For phase points above the critical point and along
the transition line, one minimum splits into two minima of equal depth. The inset shows
the second derivative of F . b) Evolution perpendicular to the transition line. The scenario
in b) also serves as a cartoon of our concept of the Mott MIT; then, the right minimum cor-
responds to the metallic solution which exists almost until it equals the insulating solution
while the insulating solution keeps its character until it disappears.

for the physical values of the mean field. Then, the physical solution is the one which
minimizes FGL. Supposed we can identify an one-dimensional order parameter ∆,
the dependence of F [U, T,∆] on ∆ is similar to the curves shown in Fig. 3.4 for a
first-order transition. The curves in Fig. 3.4a illustrate the development along the
first-order line (coming from above the critical point): a single minimum becomes
flat (i.e., with zero curvature) at the second order end-point. It splits for lower T ; the
minima separate with increasing order parameter. Note that the region where the
second derivative (inset of Fig. 3.4a) is reduced may be quite small (cf. subsection
3.7.3). Therefore, asymptotically singular behavior may be visible only very close
to the second-order end point. Figure 3.4b depicts the evolution of the free energy
functional perpendicular to the transition line: in the top curve, the left minimum
corresponds to a stable solution while the right one is metastable. The third curve
(from top) marks the MIT. In the bottom curve, only one minimum remains. Note
the asymmetry in the coexistence region which will reappear in our results for the
MIT.

Locating and characterizing phase transitions within the DMFT is potentially a
two-step process. In a first step, solutions are obtained and observables are computed
on a fine enough grid to identify nonanalytic behavior. If numerical discontinuities
are detected, it is necessary to search for hysteresis effects with coexisting solutions.
The result of the first step is then a diagram which indicates continuous transitions
and/or coexistence regions. For the MIT on the Bethe lattice, such incomplete phase
diagrams will be presented in Sec. 3.5. A second step is necessary for locating the
first-order transition line within a coexistence region. This task is particularly difficult
for QMC since this method is by construction unable to directly calculate the free
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Figure 3.5: a) Conventional DMFT self-consistency cycle, replicated from Fig. 1.1.
b) More direct iteration scheme, using the inverted lattice Dyson equation.

energy (which would be obtained by a full summation over the Hubbard-Stratonovich
field). Our solution of this problem and its results will be discussed in Sec. 3.6.

3.2.2 Convergence of Fixed Point Methods

As discussed above and in Sec. 1.3, solutions are obtained within the DMFT in an
iterative process. Evidently, there is a considerable degree of freedom for choosing a
particular scheme. The conventional choice Fig. 3.5a (here replicated from Fig. 1.1)
is numerically convenient since an explicit inversion of the lattice Dyson equation is
avoided. Its general usage in the literature implies the assumption that it converges
to all solutions of the self-consistency equations if initialized appropriately and in
the limit of high precision; i.e., that all solutions of the self-consistency equations
are stable fixed points of the iteration scheme. This is, however, by no means guar-
anteed.7 The only property that every iteration scheme fulfills by construction is
that solutions of the self-consistency equations are (possibly unstable) fixed points.
Hence, the iteration procedure for determining Uc1 and Uc2 can break down before
the solutions themselves become thermodynamically unstable; as a consequence, the
width of the coexistence region may be underestimated. At first sight, the iteration
scheme Fig. 3.5a might even imply the danger of introducing additional solutions
since it incorporates a two-stage relaxation scheme: both the solution of the impu-
rity problem and the solution of the Dyson equation are combined with old data for
the next step in each cycle. Still, a full iteration may be written exclusively in terms
of the “old” bath Green function which is updated as

G−1 −→ G−1 − 1

G[G−1]
+

1

D̃
(
G−1 − 1

G[G−1]

) . (3.1)

Here, G[G−1] denotes the solution of the impurity problem for given G−1, D̃(Σ)
denotes the solution of the lattice Dyson equation, i.e., the Hilbert transform for

7As a simple example, consider the reversal of any (locally) convergent scheme which clearly
cannot converge to the same fixed point.
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a given self-energy. At a fixed point, we have

G[G−1] = D̃
(
G−1 − 1

G[G−1]

)
(3.2)

which is equivalent to

G−1 = D̃−1(G[G−1]) +
1

G[G−1]
. (3.3)

Eqn. (3.3) involves the inversion of the Dyson equation and (using G−1 = Σ + 1/G)
is equivalent to the self-consistency equations. Therefore, no artificial solutions are
introduced in scheme (3.1). Note that (3.3) can also be read as the prescription for
the “direct” iteration scheme

G−1 −→ D̃−1(G[G−1]) +
1

G[G−1]
, (3.4)

which is illustrated in Fig. 3.5b.
The remaining question is whether the fixed points of both iteration schemes are

also (locally) stable. Only then can the iteration schemes be expected to converge
at least for a sufficiently high accuracy of the impurity solver. As we will see in
subsection 3.7.1, the direct scheme (3.3) can be rigorously shown to be a downhill
method. It is, thus, locally convergent at least in combination with underrelaxation.
While the same has not yet been shown for the scheme (3.1) used throughout this
work and in most of the literature, its stability is established empirically. Numerical
tests performed in this work did not indicate an enhanced stability of the metallic
solution for the direct scheme. Therefore, the ability to follow metastable solutions
up to their stability edge seems primarily limited by the numerical accuracy of the
impurity solver.

3.2.3 Observables

Evidently, the observables most directly available within the DMFT framework are
the solutions Σ(iωn) and G(iωn) of the self-consistency equations themselves. One
closely related quantity is the quasiparticle weight also known as mass renormalization
factor Z, which is defined in terms of the real-frequency self-energy,

Z =
m

m∗ =
1

1− ∂
∂ω

Re Σ(ω)
∣
∣
ω=0

. (3.5)

In the context of QMC simulations, one usually approximates this quantity by its
discrete Eliashberg estimate

Z ≈ 1

1− Im Σ(iω1)
πT

. (3.6)

Due to the rules for complex derivatives, both definitions agree in the limit T → 0 as
long as the Luttinger theorem is fulfilled, i.e., for Im Σ(ω = 0) = 0. For U → 0, no
mass renormalization takes place so that Z = 1. With increasing U , Z decreases until
the quasiparticle peak (in the spectrum) vanishes. Extending the Fermi liquid picture,
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Figure 3.6: Quasiparticle weight Z (Eliashberg estimate), double occupancyD, and energy
contributions for T = 0.1. Crosses (connected with lines) denote QMC results for ∆τ = 0.2,
squares are for ∆τ = 0.125. For comparison, results of second order perturbation theory
(2OPT) are shown for the total energy and the double occupancy for T = 0 (solid black
lines).

one usually associates the disappearance of the quasiparticle peak with Z ≈ 0. Z in
the definition (3.5), however, is not positive near a metal-insulator transition so that
its interpretation as a quasiparticle weight breaks down. In contrast, the discrete
version (3.6) always leads to positive Z and may therefore appear more physical. In
any case, Z loses its theoretical foundation outside the Fermi liquid phase where it
remains only a heuristic indicator of a metal-insulator transition. In the uppermost
part of Fig. 3.6, Z is shown for the relatively high temperature T = 0.1. A rapid
change of slopes indicates a transition or crossover near U ≈ 4.7.

Within the DMFT, the energy per lattice site is given as (Fetter and Walecka,
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1971; Georges et al., 1996)

E = lim
η→0+

T
∑

n,σ

∞∫

−∞

dε
eiωnη ερ(ε)

iωn − ε− Σ(iωn)
+

1

2
T
∑

n,σ

Σσ(iωn)Gσ(iωn) . (3.7)

Note the convergence factor eiωnη which is essential in order to get the correct result.
Obviously, such a term is difficult to handle numerically; in practice, η may be
replaced, e.g., by the time discretization parameter ∆τ , which also determines the
cutoff frequency in the infinite sum. This approximation can be avoided by evaluating
the noninteracting part separately. For the kinetic energy, this implies

Ekin = lim
η→0+

2T
∞∑

n=−∞
eiωnη

∞∫

−∞

dε ερ(ε)
1

iωn − ε− µ− Σ(iωn)
(3.8)

= 2

∞∫

−∞

dε
ερ(ε)

eβε + 1
+ 2T

∞∑

n=−∞

∞∫

−∞

dε ερ(ε)
(
Gε(iωn)−G0

ε(iωn)
)

(3.9)

≈ 2

∞∫

−∞

dε
ερ(ε)

eβε + 1
+ 2T

L/2
∑

n=−L/2+1

∞∫

−∞

dε ερ(ε)
(
Gε(iωn)−G0

ε(iωn)
)
, (3.10)

where we have assumed the paramagnetic case and µ = 0. Here, the interacting and
noninteracting “momentum-dependent” Green functions read

Gε(iωn) =
1

iωn − ε− µ− Σ(iωn)
; G0

ε(iωn) =
1

iωn − ε− µ
. (3.11)

In (3.10), the terms in the Matsubara sum fall off at least as 1/ω2, which makes
it well-defined also without convergence factor. At the same time, the truncation
error is reduced significantly. This is particularly important for our code, where the
number of Matsubara frequencies is comparatively small since it equals the number
of time slices L (see Sec. 3.4). The complementary ingredient to the energy is the
double occupancy D with E = Ekin + UD. In the context of QMC calculations, this
observable is best calculated directly from Wick’s theorem when sampling over the
auxiliary field. The overall behavior of D and E in the Hubbard model can be read
off (for T = 0.1) from the middle and lower parts of Fig. 3.6, respectively. For small
U , the kinetic energy increases quadratically while D and, consequently, Epot and E
increase linearly. The potential energy reaches a maximum below U = 3. A region
of strong curvature of D, Epot, and Ekin near U = 4.6 gives a rough indication of the
metal-insulator crossover. The total energy E, however, hardly shows any anomalies
at this scale. Note also that the solutions for D and E are quite close to the results
of plain zero-temperature second-order perturbation theory. We will see later that
the agreement actually becomes better for low-temperature QMC data, extrapolated
to T → 0. The offset of the curves for E gives (for not too large U) an indication of
the specific heat cV = dE/dT which is linear within the Fermi-liquid phase and is,
in general, best evaluated by fitting the temperature dependence of E.
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The direct evaluation of the compressibility (as of most other susceptibilities)
is numerically costly since it requires the QMC computation of 2-particle vertex
functions. The formalism is omitted here since we will not show corresponding results;
it can be found, e.g., in (Georges et al., 1996; Blümer, 1996). Spectra and optical
conductivity data also shed light on systems near an MIT. Since due to numerical
uncertainties these observables cannot be used for a precise determination of the
phase diagram, their discussion is postponed to Sec. 3.8 and chapter 4, respectively.

3.3 Phase Diagram: Development until 1999

In this section, we discuss early results for the fully-frustrated Bethe lattice in high
dimensions, i.e., for the homogeneous phase of the Hubbard model with semi-elliptic
DOS. The question of how the contrary scenarios of Brinkman and Rice (1970) and
Hubbard (1964b) for the metal-insulator transition could be be realized in this model
was among the first to be attacked numerically after the inception of the DMFT.
Rozenberg et al. (1992) pinpointed the Mott-Hubbard transition at Uc = 6.2 for
β = 32 where they observed the disappearance of the quasiparticle peak using QMC.8

Georges and Krauth (1992) reported Uc = 6 for β = 16 with an analogous method.
A coexistence region of metallic and insulating solutions extending from Uc1 = 5.1 to
Uc2 = 6.6 at T = 0 was found by Georges and Krauth (1993) within iterative pertur-
bation theory (IPT). The more detailed phase diagram by Rozenberg et al. (1994) is
shown in two versions: Fig. 3.7a is taken from the original publication while Fig. 3.7b
is reproduced from the review (Georges et al., 1996). The coexistence region is in
good agreement with Georges and Krauth’s (1993) earlier estimate. The position
of the first-order phase transition line was apparently adjusted in the review on the
basis of analytical considerations. The failure of the original IPT scheme to predict
the first-order transition line Uc(T ) qualitatively correctly9 can be linked to the ther-
modynamic inconsistency of the method which is not a conserving approximation in
contrast, e.g., to the DMFT framework itself. As shown in Fig. 3.8a, the IPT overes-
timates the double occupancy near the Mott transition (in comparison with ED) at
T = 0. Thus, the IPT scenario shown in Fig. 3.7b cannot be quantitatively correct,
but should overestimate Uc1 and Uc2. Otherwise, the IPT phase diagram Fig. 3.7b,
supported by QMC data as shown in Fig. 3.8b, was considered authoritative.10

In fact, it stood until 1998 when our group (Schlipf, 1998) surprisingly could not
stabilize a metallic phase in QMC calculations for the presumed coexistence region

8In his pioneering DMFT-QMC study, Jarrell (1992) demonstrated Mott-Hubbard behavior, i.e.,
a vanishing quasiparticle peak and the development of a pseudogap for the hypercubic lattice. The
focus of that work, however, was on antiferromagnetism and on the exclusion of superconductivity.

9In this context, Georges et al. (1996) note that “the free energy within the iterated perturbation
theory must be evaluated from a functional that gives the mean-field equations by differentiation,
rather than from the one-particle Green’s function. This is crucial in order to obey the exact property
of a second-order transition” (at T = 0).

10In the review, Georges et al. (1996) write: “Detailed comparisons between the iterated per-
turbation theory approximation and the QMC method at finite temperature have shown excellent
agreement for T/D of the order or 1/50 or higher. In this region, the iterated perturbation theory
phase diagram is quite reliable.”



80 3. Mott Metal-Insulator Transition in the d→∞ Hubbard Model

a) b)

U/D

METAL INSULATOR

CROSSOVER

Uc1 Uc2

T/D

0 1 2 3 4 5

0.10

0.08

0.06

0.04

0.02

0.00
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point (triangle, cf. Fig. 3.8b) is reached. As an estimate for Uc2, the new QMC results are
roughly consistent with ED for finite T (Hofstetter, 1998) and T = 0 (Georges et al., 1996);
the transition is, however, observed as continuous in QMC in contrast to ED and IPT. The
RDA result (circle) also supports a continuous transition, but for much smaller interaction
U .

(down to T = 0.05). Initial hysteresis near the computed transition line was found
to disappear upon sufficiently long iteration. Schlipf also noted that no ED results
for the MIT at finite temperature had been published. Using Krauth’s ED code as
made available in connection with the review, Hofstetter (1998) computed a rough
estimate of the coexistence region (thick horizontal lines in Fig. 3.9). The observed
coexistence region is much smaller than in IPT and shifted to smaller values of U . Due
to this disagreement and since also the ED could in principle fail near the MIT when
the width of the quasiparticle peak becomes smaller than its energy resolution, it
appeared conceivable that the IPT scenario was even qualitatively wrong. The QMC
calculations were refined and extended to lower temperatures (as part of this thesis).
In order to exclude the possibility of errors in the implementation as the reason for
this discrepancy, the collaboration was extended to include Jarrell who performed
independent QMC runs. As a final conclusion, the metal-insulator transition was
found to be continuous at least down to T = 1/35, about a factor of 3 below the
IPT estimate for T ∗ (Schlipf et al., 1999).11 These QMC results (crosses) are also
shown in Fig. 3.9. Here, the error bars for Uc(T ) extend in horizontal direction since

11Note that the estimate for T ∗ is even higher in more recent IPT calculations (Kotliar, Lange,
and Rozenberg, 2000); see Table 3.2.
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the QMC hysteresis runs were performed at constant temperature. The interpolating
line is a guide to the eye only; it is certainly compatible with the T = 0 estimates for
Uc2 by ED and PSCT (Moeller, Si, Kotliar, Rozenberg, and Fisher, 1995). Still, the
scenario of a continuous transition is in fundamental qualitative disagreement with
both ED (squares in Fig. 3.9 indicate the zero-temperature results, note the large
error bars) and IPT.

Our controversial result stirred new interest in the problem. Qualitatively, the
continuous scenario was supported by results from the random-dispersion approxi-
mation (RDA), evaluated using ED on a small cluster. Quantitatively, however, the
agreement was hardly better than, e.g., with IPT, since the (zero-temperature) RDA
result of Uc = 4 (shown as a circle in Fig. 3.9) is clearly too small to be compatible
with the QMC data.

The result of a new QMC study by Rozenberg, Chitra, and Kotliar (1999), in
contrast, was quantitatively almost compatible with our data (within double error
bars12). It also confirmed that the QMC coexistence point computed earlier by Rozen-
berg et al. (1994) and shown as triangle in Fig. 3.9 was indeed incorrect. However,
the new study demonstrated the coexistence of metallic and insulating solutions (tri-
angles in Fig. 3.10) in a temperature range where Schlipf et al. (1999) had ruled out a
first-order transition. Further support for the scenario of a first order transition came
from zero-temperature NRG studies (Bulla, 1999). The resolution of this contradic-
tion, obtained for the same model (and now even using the same numerical methods)
became an important project for this thesis and will be the subject of the remainder
of this chapter. The first part, the verification of coexistence, was accomplished in
the fall of 1999, soon after Rozenberg made available a set of QMC estimates for
G(τ) and G(τ) in both the metallic and insulating phase for the single parameter set
T = 1/32, U = 4.92 (cf. Fig. 3.12).13 At this point, all involved groups accepted that
a finite, but small coexistence region was established in the lowest temperature range
studied so far using QMC. Still, the shapes of the coexistence region were unclear.
The thick solid lines in Fig. 3.10 represent Kotliar’s perception that the region should
broaden significantly for lower T , reaching the RDA point for Uc1 and matching the
(practically identical) estimates for Uc2 obtained using ED, PSCT, and NRG (see
Table 3.1 on page 112).

3.4 Discussion of QMC Algorithms

In the main part of this section, we will discuss two aspects of the quantum Monte
Carlo (QMC) algorithm for the DMFT self-consistency problem: the discrete Fourier
transformations between imaginary time and Matsubara frequencies and the search
strategy for solutions of the DMFT equations. Both aspects are directly relevant
for the detection of the Mott transition and the associated coexistence region. The
different algorithms for handling the discrete Fourier transform used in the codes

12The point at T = 1/30 with the small error bar was not computed as part of this thesis.
13Note that this phase point is not among the previously published data, but more in the center

of the claimed coexistence region.
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Figure 3.10: Status of the phase diagram of the fully frustrated Bethe lattice in summer
1999: QMC simulations (triangles) by Rozenberg et al. (1999) establish coexisting solutions
for T < 0.05 on the metallic side of Schlipf et al.’s (1999) transition line. The solid lines
indicate Kotliar’s new suggestion for the coexistence region which should reach both the
RDA point and the NRG/ED/PSCT point at T = 0 (cf. Fig. 3.9) and is considerably
smaller and shifted in comparison with the IPT prediction (thin dashed lines).

by Ulmke (our group), Krauth and Rozenberg (as published in the review Georges
et al. (1996)), and Jarrell are compared in subsection 3.4.1. There, we will see
that the “Ulmke” code contains an avoidable error proportional to the discretization
∆τ which may prevent the detection of a second stable phase. This fact had not
been caught before, since the algorithm is still correct for ∆τ → 0 in single-phase
regions (with increased numerical effort for the same accuracy). This deficiency will
be cured in a modified scheme which brings the resulting code approximately on
par with Krauth’s code. Jarrell’s code, however, will be seen to be still superior,
in particular with respect to treating the Fourier transform. Therefore, the fact
that Jarrell apparently missed a (small) coexistence region at T = 1/30 cannot be
explained from the code alone. In subsection 3.4.2, we will identify the search strategy
for converged solutions as the problem. Insight gained in this subsection will also
put the numerical significance of Rozenberg et al.’s (1999) results in perspective. The
final two subsections are more general: subsection 3.4.3 contains a discussion of errors
and their estimation while subsection 3.4.4 shortly explains the MPI parallelization
of the QMC code accomplished in this thesis.
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3.4.1 Fourier Transformation and Smoothing

A QMC simulation within the DMFT framework consists of a simultaneous solution
of two principal equations: the lattice Dyson equation (1.30) and the defining ex-
pression for the impurity Green function (1.31). The IPT and QMC solutions of the
impurity problem are formulated in imaginary time, i.e., the bath Green function
G is needed as function of τ and the result is expressed as G(τ). In contrast, the
Dyson equation is formulated (and is local) in the frequency domain, here for Mat-
subara frequencies iωn = i(2n+ 1)πT . Therefore, two Fourier transformations (from
frequency to imaginary time and vice versa) per self-consistency cycle are necessary,
which for G read

G(iωn) =

β∫

0

dτ eiωnτ G(τ) (3.12)

G(τ) =
1

β

∞∑

n=−∞
e−iωnτ G(iωn) . (3.13)

Note that (3.13) implies antiperiodicity of G(τ) for translations β (since eiωnβ = −1)
and allows for a discontinuity of G(τ) (at τ = 0) since the number of terms is infinite.
The spectral representation of G implies a decay of G(iωn) as 1/iωn for |n| → ∞ like
for any normalized analytic function. Furthermore, G(iωn) is purely imaginary when
G(τ) = G(β − τ) as in the case of interest.

Discretization Problem

Numerically, however, the integral in (3.12) needs to be discretized and the Matsubara
sum in (3.13) has to be truncated. Since the numerical effort in QMC scales with the
number Λ = β/∆τ of discretized time slices at least14 as Λ3, this method is presently
restricted to Λ . 400. Typically, 200 time slices and less are used. A naive discrete
version of the Fourier transform,

G̃(iωn) = ∆τ
(G(0)−G(β)

2
+

Λ−1∑

l=1

eiωnτl G(τl)
)

; τl := l∆τ (3.14)

G̃(τl) =
1

β

Λ/2−1
∑

n=−Λ/2

e−iωnτl G(iωn) , (3.15)

fails for such a coarse grid. The problems are that the Green function G̃(τ) estimated
from a finite Matsubara sum can not be discontinuous at τ = 0 (as required analyti-
cally for G(τ)) while the discrete estimate G̃(iωn) oscillates with periodicity 2πiΛ/β
instead of decaying for large frequencies. This implies a large error of G(iωn) when
|ωn| approaches or exceeds the Nyquist frequency πΛ/β. Both (related) effects would

14In practice, the scaling is even worse on systems with a hierarchy of memory systems of increasing
capacity and decreasing speed.
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make the evaluation of the corresponding self-consistency equations pointless. In
particular, in the naive scheme, the self-energy diverges near the Nyquist frequency.
Finally, the sum in (3.15) is numerically somewhat unstable since G̃(τ) also oscillates
between the grid points τl.

Splining Method

Fortunately, there is physical information left that has not been used in the naive
scheme: G(τ) is known to be a smooth function. In fact, it follows from (1.55) and
(1.56) that G(τ) and all even derivatives are positive definite and, consequently, reach
their maxima at the edges τ = 0 and τ = β. This knowledge of “smoothness” can be
exploited in a spline interpolation of the QMC result {G(τl)}Λl=0 by piecewise cubic
polynomials. The resulting functions may then either be used for oversampling, i.e.,
for generating G(τ) on a finite grid or for piecewise direct analytic Fourier transforms.
In both cases, G(iωn) can be calculated for a much larger frequency range than be-
fore. Jarrell, Akhlaghpour, and Pruschke (1993) used oversampling with typically
800 Matsubara frequencies. The second choice mentioned above is implemented in
Krauth’s program: for any choice of Λ, G(iωn) is evaluated for a very large number
(by default N = 213 = 8192) of Matsubara frequencies. While the spline interpo-
lation incorporates some physical information, it is clearly not exact; therefore, the
method used on its own has its limits. Jarrell noted that the usual cubic splines
with continuous second derivative were dangerous in this respect since they tend to
generate artificial high-frequency features. This effect was found to be reduced using
Akima splines. Both implementations use splines with natural boundary conditions,
i.e., with vanishing second derivative at the end points.

As we noted recently, this is in general not a good choice; after all, the true second
derivatives are maximal at the end points. The bad fit at the boundaries then leads
to ringing (which decays faster for Akima splines). An implementation with free
boundary conditions for the second derivative which are determined in an iterative
minimalization scheme was found to be vastly superior over both schemes at least
for a restricted set of test cases. The minimization procedure can even be avoided
by computing the second derivative of G(τ) at τ = 0 exactly. A related method for
improving on the natural spline scheme is to interpolate not {G(τl)}Λl=0, but only the
difference with respect to some reference Green function obtained from, e.g., plain
second order perturbation theory or IPT. This approach, discussed in a general con-
text by Deisz, Hess, and Serene (1995), is implemented in Jarrell’s code. In addition,
the high-frequency part may be directly stabilized by supplementing the QMC es-
timates with IPT (using low-pass/high-pass filters). Since each of the approaches
discussed so far generates a number of Matsubara frequencies which is much greater
than the number of time slices, the inverse Fourier transform is unproblematic: the
rounding-off near τ = 0 is already small for the first grid point τ = ∆τ while at the
end points τ = 0 and τ = β, the numerical Fourier transforms can be shifted by
the value 1/2 to exactly cancel the rounding effect. For more information on recent
developments, see App. C and Knecht’s (2002) diploma thesis.
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Ulmke’s Smoothing Trick

A completely different approach was taken by Ulmke (1995). Here, the number
of Matsubara frequencies is chosen equal to the number of time slices. In order to
enforce the correct analytical behavior of the Fourier transforms, a “smoothing” trick
is employed: the naive Fourier transform is combined with an approximate correcting
transformation which approaches the identity for ∆τ → 0. The algorithm consists of
the following two steps:

1. Asymmetric naive Fourier transform G̃(iωn) = ∆τ
∑Λ−1

l=0 eiωnτl G(τl). The dif-
ference to the symmetric transform (3.14) is a constant finite real term ∆τ/2.

2. Smoothing transformation

G(iωn) =
∆τ

ln(1 + ∆τ/G̃(iωn))
. (3.16)

This corrected Green function fulfills ReG(ω) = 0 (for half filling and symmetric
DOS) and (approximately) G(iωn) ∝ 1/(iωn) for ω → ±ωmax. By using the inverse
correction transform G̃(ω) = ∆τ/(exp(∆τ/G(ω) − 1)) before the inverse Fourier
transform, also the artifacts in G(τ) (or G(τ)) are removed. Ulmke’s (1995) claim
that the transformation scheme would be exact in the noninteracting and in the
atomic limit is, however, incorrect. The assumed asymptotic form G(iωn) = 1/(iωn)
for hopping t = 0 applies only to the degenerate U = 0 case. Otherwise, G(iωn)
is linear for small frequencies in the insulating regime. This misconception already
points towards the main deficiency of the scheme: in order to cure a problem at high
frequencies, a transformation is applied which changes G irrespective of the frequency.
In fact, all values of G are modified significantly which are not large compared to
∆τ . Among this group, however, are not only points near the Nyquist frequency, but
also those with small iωn (in the insulator). Consequently, Ulmke’s approach treats
insulating solutions much worse than metallic solutions.

In order to illustrate this effect and for a general quantitative comparison, we
used the insulating solution G(τ) for β = 32, U = 4.92, and ∆τ = 0.25 as provided
by Rozenberg as input for the various Fourier transformation schemes. Each output
G(iωn) was then transformed to the corresponding self-energy Σ(iωn) via the inverted
Bethe lattice Dyson equation. As shown in Fig. 3.11, only Jarrell’s algorithm yields
a self-energy with the correct analytic form, i.e., with negative imaginary part for all
positive ωn.

15 While Ulmke’s algorithm just stops at the Nyquist frequency π/∆τ ,
Krauth’s code overshoots substantially (see also right inset).16 At small frequencies,
the results of Krauth’s method and of Jarrell’s method agree very well (left inset),

15Slight deviations from the quantitatively correct asymptotic form for very large frequencies (not
shown) could have been avoided by using the exact asymptotic expression Σ(iωn) → U2/(4iωn) in
this regime; cf. App. C.

16This overshooting can be attributed to the use of natural splines; it might have been overlooked
since the original code does not output frequency information. The origin of slight deviations
for intermediate frequencies ωn ≈ 1 (in comparison with the curves for Jarrell’s method and the
modified Ulmke method) is unclear.
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Figure 3.11: Comparison of Fourier-transform schemes for the step G(τ) −→ G(iωn); here
represented as Σ(ω) = ω − G−1(ω) − (W/4)2G(ω) for better resolution of the differences.
For all methods, the imaginary-time solution G(τ) for the insulating phase at β = 32,
U = 4.92, and ∆τ = 0.25 provided by Rozenberg (see text) was used as input. The
left inset concentrates on low frequencies where the smoothing artifact of Ulmke’s original
method (long-dashed line) is seen clearly; the modified version does not show this artifact.
At high frequencies (right inset), Krauth’s curves overshoot substantially while Jarrell’s
method yields 1/ω decay; Ulmke’s method (both versions) makes no predictions beyond
the Nyquist frequency.

while Ulmke’s code is off by a factor of about 2. As we will check below, this striking
disagreement completely destabilizes any insulating solution (for ∆τ = 0.25).

Improved Smoothing Method

In order to further isolate the inaccurate treatment of G(iωn) at small frequencies as
the cause of this problem, we searched for a specific cure within the general frame-
work of the smoothing trick. Obviously, the smoothing transformation (3.16) has to
be replaced by an explicitly frequency-dependent formulation. While interpolation
(using the result of the “naive” transform at small frequencies) is in principle possible,
our choice is better controlled: we replaced ∆τ in (3.16) by

(
1− (ωn∆τ/π− 1)8

)
∆τ .

The additional factor fulfills two requirements: it is very close to the value 1 when
ωn is of the order of the Nyquist frequency π/∆τ and of the order ∆τ for ωn → 0
(while always being smaller than 1). Therefore, the smoothing trick can still work for
large frequencies while the error at low frequencies is now O(∆τ 2) instead of O(∆τ).
The dramatic improvement is apparent in Fig. 3.11: the short-dashed line (“mod.
Ulmke”) is indistinguishable from the result of Jarrell’s method for small frequencies
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Figure 3.12: Behavior of the smoothing-corrected Ulmke code upon iteration, initialized
with Rozenberg’s solutions for β = 32, U = 4.92, and ∆τ = 0.25. The main part shows the
input (it=0) plus snapshots after 1, 8, and 48 iterations. In the inset, Im Σ of the insulating
solution for the first 3 Matsubara frequencies is presented as function of iteration number.
For ωn = πT , results of the uncorrected (“Ulmke”) code are also included.

while it shares the high-frequency behavior with the result of the original version
(“Ulmke”). For additional comparisons, see App. C.

It can be seen in Fig. 3.12 that this improvement indeed stabilizes the insulating
solution. Using Rozenberg’s solutions (both for metal and insulator) as input, 8
iterations using the improved code were performed for the metal and 48 for the
insulator. Both solutions are indeed stable in spite of relatively large fluctuations in
the insulating phase.17 In contrast, the insulating solution is lost and approaches the
metallic solution within a few iterations when the code with uncorrected smoothing
(“Ulmke”) is used.

The insulating solution was also found to be stable upon iteration with Krauth’s
and Jarrell’s code (not shown). Consequently, the coexistence of metallic and insu-
lating phases for β = 32, U = 4.92, and ∆τ = 0.25 is established as a result of this
subsection. Furthermore, we have identified and corrected the problem in Ulmke’s
code. Since our improved version of the code works so well even in the numeri-
cally difficult coexistence region and for a comparatively large discretization ∆τ , we
continue to use it for the rest of our numerical studies.

17For the insulating phase, the accuracy was increased in later iterations. In iterations 1-16, 10
starting configurations of the Ising field with 5000 warmup and 45000 measurement sweeps each
were used. Iterations 17-32 used 10 times 5000+150000 sweeps, iterations 33-48 used 10 times
15000+150000 sweeps.



3.4. Discussion of QMC Algorithms 89

a) b) c)

T

U

X

∆τ=0.25
∆τ=0.15
∆τ=0.10
∆τ=0.00

T

U

∆τ=0.25
∆τ=0.15
∆τ=0.10
∆τ=0.00

T

U

∆τ=0.25
∆τ=0.15
∆τ=0.10
∆τ=0.00

Figure 3.13: Scenarios for the effect of a ∆τ → 0 extrapolation on the coexistence region:
a) coexistence region shifts to smaller U at constant shape, b) coexistence region shrinks
with constant critical temperature T ∗, c) coexistence region shifts to smaller U and T , i.e.,
shrinks within the attainable temperature range.

3.4.2 Overrelaxation and Sweeping Strategies

One point that we have not discussed so far is the dependence of the shape and
extent of the coexistence region on the discretization variable ∆τ . It is important
to remember that the numerical results are only physically relevant after an extra-
polation to ∆τ = 0. While Rozenberg et al.’s (1999) results for ∆τ ≥ 0.25 make it
likely that the observed coexistence persists at ∆τ = 0, both the remaining errors in
the Fourier transformation and the inevitable Trotter error could have influenced the
phase diagram considerably. Using the knowledge that Uc2 decreases with decreasing
∆τ [this is already apparent from Schlipf’s (1998) results], the scenarios depicted
schematically in Fig. 3.13 appear possible: If the coexistence region is merely shifted
to lower U at roughly constant shape (Fig. 3.13a), the conclusions drawn from ∆τ =
0.25 may be regarded as essentially correct. If, in contrast, the coexistence region
shrunk with decreasing ∆τ and vanished for ∆τ = 0 (Fig. 3.13b), the picture at finite
∆τ would be qualitatively incorrect. The existence of a first-order transition would
then appear as an artifact for finite ∆τ . As an intermediate case, the coexistence
region could also shrink with the critical temperature T ∗ being considerably reduced
for ∆τ → 0. Then, the conclusions from ∆τ = 0.25 would still be qualitatively correct
for the full phase diagram, but not for the temperature region under consideration.
In subsection 3.5.4, will show that the ∆τ → 0 extrapolation corresponds in leading
order to a shift to smaller U , but also to slightly smaller T which is somewhere in
between the scenarios Fig. 3.13a and Fig. 3.13c.

Still, the question remains why Jarrell did not see the small coexistence region
for T = 1/30 in his contribution to our paper (Schlipf et al., 1999). The answer
includes two aspects. Both are related to methods that usually improve the conver-
gence process of DMFT simulations both in speed and in quality, but may fail to
detect multiple solutions. The first method essentially incorporates an extrapolation
to small ∆τ within the iteration process: starting with relatively large ∆τ , some
iterations are performed; then, ∆τ is decreased before continuing the iteration pro-
cess. Thus, costly iterations at small ∆τ are usually only performed when the input
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is already close to the converged solution. This strategy may fail, however, in the
MIT coexistence region. For illustration, let us assume that the target discretization
is ∆τ = 0.1 and that we are studying a phase point which corresponds to the black
cross in Fig. 3.13a, where both metal and insulator are stable (for ∆τ = 0.1). If the
convergence process is started using ∆τ = 0.25, the intermediate result is a metallic
solution, since the insulator is, then, unstable. Obviously, subsequent iterations for
smaller ∆τ can only increase the precision of the metallic solution, but are unlikely
to cause “jumps” towards the insulating solution. A second, comparatively minor
aspect of the explanation is that Jarrell initially accelerates the convergence of the
iteration scheme using overrelaxation. At least in regions of the phase space where
the insulator is thermodynamically metastable, this might also render insulating so-
lutions numerically unstable and, eventually, unobservable.

3.4.3 Estimation of Errors

Generally, QMC estimates for any observable have both statistical and systematic
errors. Systematic errors which arise from using finite ∆τ such as the remaining
error in the Fourier transformation or the inevitable Trotter error will be explicitly
considered in Sec. 3.5. More precisely, most results will first be presented for a range
of finite ∆τ . Error bars will indicate the statistical errors as determined empirically
from a set of measurements (taking autocorrelation into account). Only in a second
step, conclusions are drawn for the physical limit ∆τ = 0.

The statistical error bars computed for finite ∆τ are only a good approximation
for the true error when other sources of errors are removed. One possible source is the
thermalization of the auxiliary Ising field used for the MC solution of the impurity
problem. In our code, this field is initialized randomly for each iteration. Generically,
these initial configurations have a vanishingly small true probability of occurring in
an infinitely long Monte Carlo run.18 Consequently, they would be overweighted in
any run of finite length. As a resolution, a certain number of Monte Carlo “warm-
up” sweeps after initialization is discarded before starting measurements. Schlipf
(1998) also introduced the possibility of using multiple walkers in each iteration, i.e.,
of averaging over completely independent solutions of the impurity problem (with
identical G(τ)). Thereby, the result of an iteration is less influenced by a particularly
“bad” initial Ising configuration. We typically used 2000-4000 warm-up sweeps and
6 or 8 walkers, in parallel runs up to 32 walkers (i.e., starting points). A study on the
influence of the number of warm-up sweeps is shown in Fig. 3.14. Here, the double
occupancy is computed for a relatively high temperature (β = 10) using between 0
and 10000 warm-up sweeps. Since the curves are practically on top of each other in
the main panel, the differences with respect to the unweighted average of the results
(for 2000, 3000, 5000, and 10000 warm-up sweeps) are plotted in the inset for a
magnified view. Runs without any warm-up sweeps show a significant systematic
error within the metallic phase; all other runs agree within error bars. Here, the

18Note that this effect is already strongly reduced by random initialization compared with using
an ordered initial Ising field. After all, the usage of only the initial Ising fields would correspond to
a simple Monte Carlo procedure without importance sampling.
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Figure 3.14: Double occupancy for β = 10 and ∆τ = 0.125: comparison of QMC runs with
different number of warm-up sweeps (8 walkers with n warm-ups plus 20000 measurements
each; about 20 iterations). In the inset, differences to the average (of all results with n > 0)
are shown. No systematic dependence on n, except for n = 0 in the metallic phase.

deviations arise both from statistical and convergence errors. Only the production
runs (with 2000 warm-up sweeps; crosses) were long enough to reduce the total error
far below 10−4.

The use of insufficiently converged solutions is potentially a very significant source
of errors. It is important to realize that in principle measurements have to be per-
formed exactly at the solution of the self-consistency equations, i.e., for the exact
bath Green function. Averages over measurements performed for different impurity
models corresponding to approximate solutions do not necessarily converge to the
exact answer in the limit of an infinite number of models (i.e., iterations) and mea-
surements.19 Still, the most important practical point when computing observables is
that only runs are included in averages which are close to the solution in comparison
to the asymptotic statistical error. For higher precision, the number of sweeps (and
not only the number of measurements) must be increased. In this work, we usually
used between 105 and 5 · 105 sweeps, in particular cases more than 106 sweeps. If the
convergence of solutions was unclear, we started new iteration chains; partially with
the same initial self-energy (but different random numbers), partially using specially
prepared self-energies.20 The good convergence of our solutions will also become

19Trivially, a measurement of the free energy F itself (using a suitable impurity solver) is a good
example. Since F is minimal for the true solution, all measurements taken for approximate solutions
will be too large. The correct answer can, therefore, not be approached by averaging over many
measurements, but only by reducing the deviations from the exact solution.

20We will prove in subsection 3.7.1 that the iteration process is convergent at least for the direct
iteration scheme since (for an exact solution of the impurity problem) each step is downhill in the
space of hybridization functions with the step length being proportional to the slope of the free
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apparent from the high quality of the fits in the following sections.

3.4.4 Parallelization

A more technical part of this work was the parallelization of the single-band version
of the QMC code. This effort was necessary in order to use all available computa-
tional resources efficiently and to reach the high accuracy necessary for computing
the first-order metal-insulator phase transition line. We chose to implement only
coarse-grained parallelism where the same impurity model is (approximately) solved
independently in parallel processes. The self-consistency conditions (including the
lattice Dyson equation) are evaluated by a master process after the Green functions
obtained in each solution have been averaged. While this approach practically limits
the number of processors that can be efficiently used to about 16 or 32 (otherwise the
relative cost for warm-ups is too high), it has the advantage that the communication
overhead is negligible and that its implementation using the Message Passing Inter-
face (MPI) is straightforward. Note that it is a nontrivial task to ensure independent
random-number streams for the parallel runs. We used the Scalable Parallel Random
Number Generator (SPRNG) library, version 1.0 (Ceperley, Mascagni, Mitas, Saied,
and Srinivasan, 1998) for this purpose.

In order for the new code to be executable in serial environments without retaining
separate serial versions, we instrumented the program with compiler switches so that
both MPI extensions and the random number generator (as well as the maximum
value of Λ) can be chosen at compile time. While the code originally already ran
on a range of architectures (Cray T90, IBM AIX, Fujitsu VPP), manual setup and
knowledge of the suitable compiler options was required for each new compilation.
In order not to further complicate matters with the inclusion of new architectures
(Intel Linux, Cray T3E) in serial or parallel environments, we created makefiles and
an autodetection script. This setup toolbox automatically executes the necessary
compilers with appropriate options and includes libraries depending on the detected
architecture. Furthermore, the whole code (including tools and required precompiled
libraries) can be packed automatically into a single self-extracting file; this feature
simplifies code distribution significantly. All of these improvements were later inte-
grated into the multi-band versions of the QMC code by Held and Keller.

Ironically, the most demanding QMC calculations (for Λ & 300) were run in
serial mode. The reason is that problems of this size can only be treated efficiently
on vector supercomputers with very fast memory access. In principle, the VPP as
a vector parallel computer with clock speed memory access would have been ideal
for the purpose. Despite an investment of some hundred hours of development time,
however, we could not get the MPI version of our program to run on this machine. As
the same code worked on all other architectures that we had tested it on, we suspect
a bug in the MPI implementation for the VPP.

energy functional. Therefore, the iteration process cannot stick in unphysical regions; it always
drifts towards a valid solution. Numerical problems in this respect can only arise near points in
the extended T,U,∆ phase space where new minima of the free energy functional appear (as a
functional of the hybridization function ∆).
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3.5 Results: Coexistence Region

In this section, we will begin the systematic construction of the phase diagram of
the fully frustrated Hubbard model with semi-elliptic DOS in d→∞ at half filling.
For this purpose, only those observables need to be considered which can be directly
computed from standard QMC solutions of the DMFT self-consistency equations.
As shown in subsection 3.5.1, the internal energy E is very well suited for determin-
ing the metal-insulator transition in the physical limit ∆τ → 0, much better than
other observables considered so far. In subsection 3.5.2, we establish and parametrize
universal, i.e., temperature-independent, properties of the insulating phase. Measure-
ments of the energy E presented in subsection 3.5.3 are used for the construction of
a preliminary phase diagram including a crossover region at high temperatures, a
critical end point, and a region of coexisting metallic and insulating solutions at low
temperatures in subsection 3.5.4.

Measurements of the double occupancy D and its (difficult) extrapolation for
∆τ → 0 in the metallic phase are discussed in subsection 3.5.5. The very precise
extrapolated QMC estimates for E and D obtained in this section will allow for an
implicit comparison of the free energies of the metal and the insulator (within the
coexistence region) and will lead to the full phase diagram in Sec. 3.6.

3.5.1 Choice of Observables and Extrapolation

In this subsection, we determine which of the observables introduced in subsection
3.2.3 are best suited for indicating and characterizing the metal-insulator transition.
Using QMC results for the relatively high temperature T = 1/15 ≈ 0.067 as a test
case, we discuss in particular the difficulties of extrapolations to the physical limit
∆τ = 0.

The double occupancy for T = 0.067 is shown in Fig. 3.15 for a range of values
of the discretization parameter ∆τ . Here, the symbols, which reflect QMC mea-
surements, have been connected by straight line segments in order to guide the eye.
As expected on physical grounds, the double occupancy decreases significantly with
increasing U , i.e., with decreasing metallicity. Evidently, the slope |dD/ dU | reaches
a maximum at 4.55 . U . 4.65 (depending on ∆τ). One would be hard pressed,
however, to decide if there is a continuous crossover or a sharp transition, even for
finite ∆τ . Furthermore, the dependence of D on ∆τ is seen to be very irregular:
coming from the metallic side the ∆τ error increases up to U ≈ 4.6 while it is invis-
ible on the insulating side.21 One might suspect that the primary effect of a finite
∆τ error is a horizontal shift of the curves towards larger values of U . Still, results
of an extrapolation to ∆τ = 0 would strongly depend on the assumed (nontrivial)
functional forms and, thus, be unreliable without additional input.

A similar picture emerges for the quasiparticle weight Z as defined in (3.6) and
shown in Fig. 3.16. This observable is in principle a very good candidate for char-
acterizing the metal-insulator transition since, within the Fermi liquid picture, the

21The absence of significant ∆τ dependence for the QMC estimate of D in the insulator may be
specific to the particular algorithms used in our code.
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Figure 3.15: Double occupancy for T = 1/15 as a function of interaction U for various
values of the imaginary time discretization parameter ∆τ . Lines are guides to the eye only.
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Figure 3.16: Discrete estimate for the quasiparticle weight Z for T = 1/15. Lines are
guides to the eye only.

effective mass in the metal diverges as m∗/m = 1/Z for Z → 0 so that Z = 0 defines
the MIT. As discussed in subsection 3.2.3, however, Z cannot be associated with a
physical quasiparticle weight at finite temperatures very near to or beyond the MIT.
In fact, it is seen in Fig. 3.16 that the (discrete) QMC estimates for Z remain finite
even for U & 5. Again, the ∆τ error is quite irregular: it is significant only on the
metallic side and maximal in the transition region U ≈ 4.6.

The potential energy Epot = UD and the kinetic energy Ekin are presented in
Fig. 3.17a and Fig. 3.17b, respectively. Obviously, our above remarks on the general
shape and on the ∆τ error of D directly carry over to Epot. In comparison, the
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Figure 3.17: a) Potential energy, b) kinetic energy for T = 1/15. Lines are guides to the
eye.
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Figure 3.18: Total internal energy for T = 1/15. Lines are guides to the eye only. The
kink extrapolating to U ≈ 4.6 for ∆τ → 0 indicates a transition or narrow crossover region.

kinetic energy shows a more pronounced kink near U ≈ 4.6, in particular for small
∆τ . The ∆τ error is still maximal in this region, but significant for all values of
U . Since the ∆τ dependence has opposite signs for Epot and Ekin, the total internal
energy E = Epot +Ekin will have a smaller ∆τ error than its constituents. Note also
that the curvature has opposite sign for Epot and Ekin, both in the metallic and in
the insulating region. Thus, some cancellation will occur so that E(U) is also less
curved than its constituents which may help in pinpointing a transition point.

This is indeed seen in Fig. 3.18. For each value of ∆τ , E(U) is linear within
(statistical) error bars on the metallic side up to some transition point which decreases
from roughly U ≈ 4.7 for ∆τ = 0.25 to U ≈ 4.6 for ∆τ = 0.1. On the insulating side,
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the curves are again almost linear with significantly reduced slope; here, however,
a small curvature remains visible. The comparatively sharp kinks unambiguously
indicate the positions of phase transitions (or narrow crossover regions) for each
value of the time discretization ∆τ . A detailed analysis using suitable fit functions
will be presented in the next subsection. Furthermore, the dependence of the curves
on ∆τ is very regular both on the metallic and on the insulating side. While we
will look at the precise extrapolation laws below, it is apparent from the figure that
the ∆τ error is about a factor of 3/2 larger in the metallic phase. This explains
the irregularity of the ∆τ dependence within the transition region where the phase
transition (or crossover) line is passed upon varying ∆τ for constant U . As long
as this problematic region is excluded, very precise extrapolations ∆τ → 0 can be
expected. Finally, the regular shape of each curve also significantly reduces the
convergence error since measurements obtained from unconverged solutions can be
detected as deviations from the regular pattern and then corrected by performing
additional simulations.

If high-frequency tail corrections in the energy estimators are properly taken
into account (cf. subsection 3.2.3), low-frequency errors associated with the discrete
Fourier transforms (cf. subsection 3.4.1) are avoided, and no phase transition lines
are crossed, the error in the estimate for E is dominated by the Trotter error (cf.
Sec. 1.3) which is O(∆τ 2). Therefore, a reasonable starting point for a quantitative
analysis is a purely quadratic extrapolation ∆τ → 0 (i.e., a linear least-squares fit in
∆τ 2), both on the metallic and on the insulating side. The intersection of linear fits
for Em(U) and Ei(U) of the metallic and insulating solution then determines a first
estimate of the transition point.

We found that the accuracy both in the estimates for energies and for transition
points could be improved by an order of magnitude by extending the least squares
fits to fourth order in ∆τ (i.e., by using fits of the form EU(∆τ) = EU(0) + c2∆τ

2 +
c4∆τ

4) and by extracting a more complicated, more accurate, and thermodynamically
consistent expression for the energy in the insulator.

3.5.2 Properties of the Insulating Phase

Leaving properties of the metallic phase for the next subsections, we will now take
a detailed look at the insulating phase. The symbols in Fig. 3.19 represent all of
our QMC measurements of E inside the insulating phase for various temperatures
T and interactions U as a function of ∆τ 2. The most important observation is the
absence of any significant dependence of E on T . Such universal behavior is expected
deep inside the insulating low-temperature phase where a well-developed gap in the
spectrum exists at the Fermi energy (cf. Sec. 3.8) and where thermal excitations are
suppressed exponentially. Evidently, the specific heat is already reduced by several
orders of magnitude compared to the metallic case in the low-temperature region of
interest very close above the MIT as soon as a pseudo-gap appears. One practical
consequence is that for fixed interaction U all QMC data points may be included
in a least squares fit for the extrapolation ∆τ → 0, irrespective of the associated
temperature T . The solid lines in Fig. 3.19 reflect such extrapolations; here all three
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Figure 3.19: Total internal energy in insulating phase vs. (∆τ)2. Since the QMC estimates
(symbols) do not significantly depend on the temperature T for fixed interaction U , they
can be collectively extrapolated to ∆τ → 0 in quadratic least squares fits in (∆τ)2 (solid
lines) for each value of U .

coefficients in the quadratic fit (in ∆τ 2) were taken as free parameters. Due to the
small curvature, the extrapolations are well conditioned.

The extrapolated values for E are shown as large circles in the lower part of
Fig. 3.20 as a function of U . The small colored symbols in the same plot represent
a scaled version of the measurements shown in Fig. 3.19 according to the “average”
extrapolation law

EU(∆τ) = EU(0)− 0.036U∆τ 2 − 0.9 ∆τ 4 (insulator) , (3.17)

which was extracted from the data shown in Fig. 3.19. The solid line in the lower
part of Fig. 3.20 indicates our best fit for the extrapolated data,

Ei(U) = −0.515

U
− 0.0027

U − 3.95
− 0.0071 + 0.00325U − 0.00025U 2 , (3.18)

where the index i stands for “insulator”. It is evident that this particular form was
not chosen for elegance. Instead, we sought a curve that is smooth both within and
near the parameter range U = 4.7 . . . 6.0, is easily differentiable analytically, and
accurately represents our extrapolated QMC data. As a slight bias we also tried
to produce a reasonable approximation to data for the crossover region (T = 0.1,
U . 4.5). The success is evident from the upper part of Fig. 3.20 where only the
difference of the extrapolated or rescaled data to the fit function is plotted. Except
for very small U [where the scaling function (3.17) for the dependence on ∆τ is no
longer expected to hold], the vast majority of scaled data points deviates by less
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Figure 3.20: Total energy in insulating phase vs. U . In the lower plot, the large circles
denote the results of the extrapolations shown in Fig. 3.19. The small symbols correspond
to the rescaled QMC data, according to the extrapolation law (3.17) for ∆τ → 0. The
solid line indicates the (T -independent) fit function (3.18) which is consistent with the
solid line for D shown in Fig. 3.21. The upper part gives a magnified view on the (small)
discrepancies between data and fit curve.

than about 4 · 10−4. The deviations of the extrapolated data (large circles) are even
smaller. In fact, we can trace the outliers at U = 5.0 and U = 5.8 to statistical
deviations in the extrapolation process. This explanation is supported by the fact
that the scaled data points [using the extrapolation law (3.17)] are much closer to
the fit than the result of the free extrapolation. In summary, we expect the error of
our fit (3.18) to be close to 10−4 at least for 4.75 ≤ U ≤ 6.0.22

Such a high accuracy seems particularly impressive since the T -independent en-
ergy in the low-temperature insulating phase is a ground state property. This fact
also allows for a numerical check since, at T = 0, the internal energy and the double
occupancy are simply related: D(T, U = 0) = dE(T, U = 0)/dU . Therefore, the
derivative of our fit (3.18) for E(U) should represent the QMC data for D(U). This

22The negative deviations for T = 0.05, U = 4.7 and for U < 4.7 are related to the proximity of
the phase boundaries. It is unclear if the effects are fully physical; most probably, at least some part
arises from a bias in the statistical error which may be significant for any almost unstable solution.
On the other hand, the finite heat capacity implied by negative deviations with lower temperatures
is also plausible on physical grounds. In any case, the effects are too small to affect our numerical
results.
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Figure 3.21: Double occupancy in insulating phase vs. U . The symbols in the lower part
represent the QMC data (without extrapolation ∆τ → 0). The fit curve (solid line), given
by (3.19), is thermodynamically consistent with the fit for E shown in Fig. 3.20. The upper
part shows the deviations of the QMC data from the fit curve which is significant only for
small U [i.e., for U → Uc1(T,∆τ)] and dependent on ∆τ (not encoded in the figure).

can be easily verified since the QMC measurements for D are practically free of ∆τ
errors in the insulating phase so that no extrapolation ∆τ → 0 or scaling is necessary.
The “raw” QMC estimates are shown in the lower part of Fig. 3.21; here, the solid
line is given by the function

Di(U) =
0.515

U2
+

0.0027

(U − 3.95)2
+ 0.00325− 0.0005U . (3.19)

Again, the deviations of the measurements from the fitting function are magnified
in the upper part of the figure. The overall agreement is very good; the deviations
at small U indicate a strongly increased influence of the ∆τ error near the phase
boundary at not too low temperatures (see subsection 3.5.5).

As a result of this subsection, we have identified the internal energy E as an ap-
propriate observable for a QMC study of the metal-insulator transition. In addition,
we have established functional expressions for E and D within the insulating phase.
These will not only be used for the determination of the “coexistence” phase diagram
in the next subsection, but also help determine the low-temperature behavior of the
thermodynamic phase transition line in Sec. 3.6.
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3.5.3 Internal Energy

In the following, we present QMC data for the internal energy E, fits for finite ∆τ ,
and extrapolations to the physical limit ∆τ = 0, ordered by decreasing temperature.
The extrapolated data is summarized at the end of this subsection; the resulting
phase diagram will be shown in the next subsection 3.5.4.

Since the insulating side has already been analyzed in the previous subsection,
the remaining difficulty is the treatment of the metallic phase and the determination
of the phase boundaries. Within the metallic phase, we use quadratic least-squares
fits in ∆τ 2 for fixed U . Due to the small number of data points, the error in the
quadratic coefficient (i.e., the ∆τ 4 term) is, however, of the same order of magnitude
as the estimate itself. Furthermore, the estimate may shift depending on whether
or not data points with small ∆τ are included. In order to minimize the resulting
errors, we have assumed slow variation of this coefficient as a function of U and T
and have performed a global fit. The result is that the ∆τ 4 coefficient for the metal
is always close to the value 0.95 computed for the insulating phase. The observation
of a slight variation as a function of T lead to a linear interpolation with a value of
1.2 for T = 0.1 and 0.8 for T = 0.02.23 This coefficient was then held fixed for all
extrapolations within the metallic phase.

The results of such extrapolations to ∆τ = 0 at T = 0.1, the highest temperature
considered here, are denoted as solid circles in Fig. 3.22. The ∆τ = 0 values for
U = 4.1, U = 4.2, and U = 4.3 fall on a straight line which extends to U = 4.4 and is
partially drawn as a thick and partially as a thin line. The parallel lines connecting
data points for finite ∆τ are offset according to a scaling law which not only includes
the globally determined ∆τ 4 coefficient, but also a ∆τ 2 coefficient which has been
averaged from the extrapolations for U = 4.1, U = 4.2, and U = 4.3. Each of these
“metallic” lines crosses the corresponding “insulating” line (beginning as thick curve
at large U and extending into a thin line towards the metallic phase) at some point.
In this region, however, the QMC data deviates systematically from the fit curves,
indicating a smooth crossover rather than a phase transition.24

An analogous plot for T = 0.067 (more accurately: β = 15, i.e., T = 1/15) is
shown in Fig. 3.23.25 Here, the transition is (almost) sharp within the numerical
accuracy, i.e., the data follows linear fits in the metallic phase and the universal form
(3.18) in connection with (3.17) in the insulating phase, respectively, for all values
of the interaction U . Consequently, the transition points can be determined and ex-
trapolated very accurately: Uc = 4.59. Only extremely close to the transition points,
i.e., for U = 4.65 at ∆τ = 0.15 and U = 4.7 at ∆τ = 0.2, do slight deviations of the
QMC data from the fits indicate some rounding effect. This observation, in combina-
tion with conclusions from lower temperatures, will later lead to the conclusion that
T = 0.067 is close to, but slightly above, the critical temperature.

23Note that while the relative error for the coefficient is relatively large, its influence is small.
The intrinsic uncertainty of about 0.2 translates, e.g., into a possible additional error in the energy
estimates of 2 · 10−5 for ∆τ = 0.1 and 3 · 10−4 for ∆τ = 0.2.

24As the precise behavior of E in the crossover region will be irrelevant in the following, we only
sketched the assumed form by manually adapting cubic splines (thick lines).

25Compare also the data for this temperature shown in the previous subsection.
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Figure 3.22: Total energy for T = 1/10: the QMC data (open symbols) and its extra-
polation to ∆τ = 0.0 (solid circles) is well represented by linear fits (thin lines, partially
coinciding with thick lines) for U . 4.3 (and beyond, depending on ∆τ). For U & 4.6,
the data agrees with fit curves for the insulator given by (3.18) and (3.17) (thin/thick
lines). Deviations at intermediate U (thick line segments below kinks of thin lines) indicate
crossover regions.
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Figure 3.23: Total energy for T = 1/15: the QMC data (open symbols) and its extrapola-
tion to ∆τ = 0.0 (solid circles) is well represented by linear fits on the metallic side and by
(3.18) and (3.17) on the insulating side except for data right at the kinks. This indicates a
very narrow crossover close to a sharp transition.
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Figure 3.24: Total energy for T = 1/20: in order to avoid confusion within the coexistence
region, QMC data for the metallic phase is presented in the lower plot and the data for the
insulator in the upper plot (with identical scales). As in the previous plots, the fit functions
for the insulating phase (thick lines in upper plot) have the universal form given by (3.18)
and (3.17); their extent reflects our estimate of its stability region. In the lower plot, the
linear fits for the metal are drawn as thick lines below Uc2, where the metallic phase is
stable, but extended as thin lines up to Uc2b, where they cross the corresponding fit for the
insulator.

In contrast, a small coexistence region of metallic and insulating solution appears
for T = 0.05 as shown in Fig. 3.24. Here, we have split the presentation of the
QMC data for the metallic phase (lower part) and insulating phase (upper part).
The fit curves are repeated in both parts with emphasis (thick lines) on the phase
under consideration. While the extent of the fit curves for the insulator reflects
our estimate of the extent of its stability region (which depends on ∆τ), the metallic
curves are always drawn until they cross the corresponding insulating solutions. These
crossing points, which can be determined with great precision, will later be used as
parameters for fitting the double occupancy. The metallic curves are drawn as thick
lines within (our estimate of) their stability range. Note that the QMC data generally
agrees well with the fit curves; only right at the stability edges, systematic deviations
towards the more stable phase are seen. While it is plausible that this effect might be
partially genuine, we observed that it can be reduced by improving the accuracy of
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Figure 3.25: Total energy for T = 1/25, analogous to Fig. 3.24.

the QMC solution of the impurity model, i.e., by using more sweeps. Therefore, we
attribute most of the visible deviations between the QMC data and the fit functions
to remaining numerical errors.

For T = 0.04, the coexistence region is already much wider (in comparison with
T = 0.05) as is apparent from Fig. 3.25. The linear dependence of E on U in the
metallic phase clearly extends far into the coexistence region. The data points shown
at the edges of the stability regions were only computed with high enough accuracy
to verify their stability. Since our top priority was the accurate determination of
the first-order phase transition line (which is not directly influenced by this data),
additional available numerical resources were only spent for a selected set of temper-
atures.

The temperature T = 0.031 (i.e., β = 32) is already low enough that the extent
of the coexistence region is large even on our usual grid with steps of ∆U = 0.1 or
∆U = 0.05. On the other hand, the temperature is still high enough that (on vector
machines and supercomputers), a larger number of simulations could be run even
for the smallest discretization regularly used in our study, ∆τ = 0.1. Therefore, we
have chosen this temperature for a careful analysis within and near the edges of the
stability regions of both metal and insulator. The impressive agreement with our fit
curves (which are fixed for the insulator and adapted only for the metal) is clearly
seen in Fig. 3.26. The data shown here in connection with data for parameter points
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Figure 3.26: Total energy for T = 1/32, analogous to Fig. 3.24. The QMC data, here
with increased precision near the edges of the coexistence region, is in very good agreement
with the fit curves.

where metallic or insulating solutions were found to be unstable (not shown) was
not only used for determining the stability edges for this temperature, but also for
establishing the extrapolation laws (for ∆τ → 0) for the other temperatures.

Note that the metal remains stable and closely follows the assumed linear depen-
dence of U until its energy almost reaches the energy of the insulating solution at Uc2.
The solutions are very different energetically, however, when the insulator becomes
unstable at Uc1. Qualitatively, the same behavior is also demonstrated for T = 0.025
in Fig. 3.27 and for T = 0.02 in Fig. 3.28. As we will see in subsection 3.5.5, the
double occupancy of the metal also approaches that of the insulator near Uc2. Such
behavior is not generically expected for first-order transitions: since the order param-
eter is necessarily different between coexistent solutions even at the stability edge of
one solution, most properties (not directly related to the free energy) will usually
also be quite different. On the other hand, the observed behavior is clearly compat-
ible with a Landau theory as has been illustrated in Fig. 3.4b. More light can be
shed on the observed behavior by considering the qualitative physics of the d = ∞
Hubbard model near the MIT. Since the formation of quasiparticles lowers the total
energy and since the space of solutions in the homogeneous phase may be regarded
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Figure 3.27: Total energy for T = 1/40, analogous to Fig. 3.24.

as predominantly one-dimensional,26 the energy of the metallic phase is expected to
be always lower than that of the insulator and that no crossing occurs in any relevant
property. We will later make use of the fact established by Moeller et al. (1995) that,
at T = 0, the metal approaches the insulator continuously. In this special ground
state situation, both the energy (as always) and its derivative D vary smoothly at
Uc2. Approaching the MIT from the metallic side, the Fermi-liquid quasiparticle peak
decreases in width (and weight) until it vanishes smoothly at the MIT. Right at the
MIT, the difference between metallic and insulating spectrum is only a peak of zero
width exactly at the Fermi energy. Since this difference is of measure zero, all ob-
servables that can be expressed via integrals over the spectral function must agree.
Still, the presence or absence of the quasiparticle peak is a qualitative difference and
associated with the fact that the entropy vanishes in the metal, but jumps to a finite
value of ln 2 at the MIT (Georges et al., 1996; Gebhard, 1997; Kalinowski and Geb-
hard, 2002). Thus, our observation that the metallic phase closely approaches the
insulating phase in terms of energy and other observables is consistent with general
properties of the model, in particular in the low-temperature limit T → 0.

26If this remark could be made fully quantitative, we would have found the order parameter. In a
qualitative sense, it is based on the smoothness and the observed behavior of G(τ) and Im Σ(iωn):
Solutions (for fixed U) are essentially characterized by G(β/2) or Im Σ(iπT ) (due to the smoothness
and since the asymptotic behavior for τ → 0 and |ωn| → ∞ is determined by U alone).
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Figure 3.28: Total energy for T = 1/50, analogous to Fig. 3.24.

Figure 3.27 shows results for T = 0.025 and includes data (for ∆τ = 0.1) with
L = 400 time slices which was the maximum used in this study and is significantly
larger than values previously reported in the literature. Again, the agreement with
the fit curves is seen to be very good. Note that Uc1, the stability edge for the
insulator, agrees with the estimate obtained for T = 1/32. In contrast, lowering T
significantly reduces the energy of the metallic phase as the specific heat is then very
significant. Therefore, Uc2, the stability edge of the metal, and Uc2b, the point where
the extrapolated energies of metallic and insulating phases cross, further increase
upon lowering T .

These trends continue for T = 1/50 as seen in Fig. 3.28. At this temperature,
no simulations can be performed at ∆τ = 0.1; instead the maximal number of time
slices is limited27 to Λ = 400 leading to ∆τ ≥ 0.125 ≈ 0.13. Since the temperature-
independence of the energy in the insulating phase has already been established in
subsection 3.5.2, the number of data points in this phase is kept to a minimum and the
numerical effort is concentrated instead on the metallic phase within the coexistence

27Note that the scaling of the computational effort as Λ3 established in Sec. 1.3 is only valid
for supercomputers where the memory system works at cpu speed. For regular workstations, the
scaling at large Λ is closer to Λ4 so that the computational cost for Λ = 400 is already more than
two orders of magnitude higher than for Λ = 100, e.g., for ∆τ = 0.1 at T = 0.1. See also subsection
1.3.2.
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Figure 3.29: Total energy for T = 1/60. Due to lack of sufficient data, the coefficients for
the ∆τ → 0 extrapolation are estimated from the results at higher temperature. Otherwise,
the plot is analogous to Fig. 3.24.

region. Again, the excellent agreement between the QMC data and the fit curves
implies high confidence in the measured energies as well as the predictions for Uc2

and Uc2b.

The QMC data for T = 0.0167 (i.e., β = 60) presented in Fig. 3.29 should be
regarded more as the basis of an extrapolation towards lower temperatures than as a
complete, independent set of measurements. In fact, simulations were only performed
at ∆τ = 0.2 on a sparse grid. The fit to the metallic solution was then scaled to
∆τ = 0 with a function whose coefficients in ∆τ 2 and ∆τ 4 were both extrapolated
from the higher-temperature data. Due to the larger intrinsic error, these results are
only used as an indication of the phase boundaries and not for the determination of
the first-order phase transition line.

Figure 3.30 summarizes the QMC measurements of the full internal energy, extra-
polated to the physical limit ∆τ = 0. Here, the symbols correspond to the data
points labeled as “∆τ = 0.0” in Fig. 3.23 – Fig. 3.28. In contrast to these previous
plots, however, only those extrapolated data points are included which fall into our
estimate of the stability region of the metallic phase. These data points are essentially
independent from each other (up to a globally interpolated coefficient for the ∆τ 4

term in the extrapolation ∆τ → 0). The straight narrow lines are the corresponding
fits; they are cut off where the metal becomes unstable (towards larger U), or where
the linearity is expected to break down (towards smaller U). The thick black line
corresponds to the insulating phase. Its range of stability is not encoded in the plot;
the slight increase of its lower edge Uc1 with increasing T will be seen in Fig. 3.31.
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Figure 3.30: Internal energy E vs. interaction U . The symbols and thin colored lines
indicate the results of extrapolations ∆τ → 0 for QMC data within the metallic phase and
the linear fit curves (cf. previous plots). The thick solid line denotes the energy of the
insulator within its T -dependent stability region. The thin bottom line marks the ground
state energy in the metallic phase as determined in Sec. 3.6.

Also included in the graph is an extrapolation of the energy of the metal to T = 0
(see Sec. 3.6).

The most important result obtained so far in this section is certainly the observa-
tion of coexisting metallic and insulating solutions for T . 1/15. The corresponding
phase diagram, to be shown and discussed in the following subsection 3.5.4, qualita-
tively agrees with earlier suggestions (cf. Sec. 3.3). A second important point that has
not been previously discussed in the literature is the behavior of the energy near the
MIT: the dependence of E on U is almost linear both in the metallic phase and in the
insulating phase with the slope being significantly lower in the latter. Furthermore,
the difference in E (and other properties) is small when the metallic phase becomes
unstable at Uc2 (see the discussion starting on page 104). A third point related to
the linearity is the very regular dependence of E on ∆τ within each phase. It allows
us to determine the phase boundaries with higher precision than has been achieved
by other groups using different criteria.

3.5.4 Coexistence Phase Diagram

The implications of the data presented so far for the phase diagram are shown in
Fig. 3.31. Here, large crosses mark the boundaries Uc1 and Uc2 of the coexistence
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Figure 3.31: MIT phase diagram: critical end point at U ∗ = 4.665, T ∗ = 0.055 (approx-
imate error bounds are indicated as green rectangle), crossover region at higher T , and
coexistence region at lower T . Large tilted crosses indicate Uc1 and Uc2, the lower and up-
per edge of the coexistence region, respectively. Smaller upright crosses denote Uc2b, where
the fits for the energies of metallic and insulating phases coincide (cf. subsection 3.5.3).
Symbol widths roughly indicate the associated errors (in U).

region as estimated from the QMC simulations, extrapolated to ∆τ = 0.0. These data
points correspond to the end points of the fit curves for the energy estimates presented
in Fig. 3.24 – Fig. 3.29 (thick part of the fit curves for the metallic phase). Small
crosses in Fig. 3.31 indicate the crossing points Uc2b of the (extrapolated) fit curves for
metal and insulator. While these crossing points lie just outside the stability region
of the metallic phase at low temperatures, they are within the crossover region at
higher temperatures. The lines shown in Fig. 3.31 do not only guide the eye, but also
represent our best estimates of the phase boundaries. In particular, their common
crossing point defines the critical point, i.e., the upper tip of the coexistence region
at U ∗ = 4.665 and T ∗ = 0.055. At the same time, it also forms the lower tip of
the crossover region. The thin blue lines represents our definition of the crossover
region: between these lines, the QMC energy estimates deviate both from the linear
fit curves on the metallic side and the universal form (3.18) on the insulating side
(cf. Fig. 3.22 and Fig. 3.23). The estimate of the coexistence region, denoted by
thick blue lines, was obtained from interpolation of a subset of the QMC data points,
using a spline slightly biased to be consistent with the extrapolation of Uc2b (thin
grey line) and with the boundaries of the crossover region. The errors in the critical
temperature and in the critical interaction are highly correlated as indicated by the
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Figure 3.32: MIT phase diagram: a) Status as of Spring 2000 as established by this work,
Rozenberg et al. (1999), and by preliminary NRG results for discretization Λ̃ = 2.0 (Bulla,
unpublished) in comparison with the IPT scenario [Georges et al. (1996); cf. Fig. 3.7]. b)
Status as of Fall 2000: improved QMC estimates (this work), preliminary NRG results
for discretization Λ̃ = 1.6 (Bulla, unpublished), and new QMC boundaries by Joo and
Oudovenko (2001) which include the critical point determined by Rozenberg. The NRG
estimate for Uc2(T = 0) is in excellent agreement with PSCT (Moeller et al., 1995).

green tilted rectangle. A reasonable numeric representation is ∆T = 0.004, ∆U .

0.03. The coexistence region shown in Fig. 3.31 is one of the main results of this
thesis: It resolves the dispute described in subsection 3.1.2 and Sec. 3.3 since it
essentially confirms Rozenberg et al.’s (1999) earlier and Joo and Oudovenko’s (2001)
independent QMC results and shows excellent agreement with independent NRG
results (Bulla, Costi, and Vollhardt, 2001). In addition, our result has the smallest
errors.

Before we further substantiate these claims, let us take a short look at the his-
torical development. The tilted crosses in Fig. 3.32a represent early QMC results
obtained using the corrected code (cf. subsection 3.4.1) as presented at the DPG
spring meeting on March 30, 2000. Here, lines are guides to the eye only. Within
their (large) error bars, these preliminary results for the boundaries of the coexis-
tence region were fully consistent with the coexistence points (triangles) previously
found by Rozenberg et al. (1999). At the time of the conference, finite-temperature
NRG estimates (Bulla, unpublished28) were not yet reliable: the horizontal crosses
in Fig. 3.32a correspond to an energy discretization parameter Λ̃ = 2.0, where the
spectrum is modeled by a discrete set of δ-peaks at energies ±E0 Λ̃n; the physical

28The NRG points at T = 0 coincide with previously published data (Bulla, 1999).
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continuum limit is recovered for Λ̃ → 1. Attributing the differences between NRG
and QMC to the known systematic underestimation of critical interactions by NRG
at large Λ̃ (and finite temperature), the agreement appeared reasonable, in particular
when compared with IPT (thin lines).

Figure 3.32b represents the status of the phase diagram of late October 2000.29

Here, our QMC estimates (crosses) are already based on measurements of the full
internal energy (cf. subsection 3.5.1). This fact and a large number of simulations
on a finer grid result in an accuracy which is much higher than that of the prelimi-
nary results shown in Fig. 3.32a and also significantly higher than that of Joo and
Oudovenko’s (2001) results shown as squares in Fig. 3.32b (which were first available
as preprints in late September 2000).30 The surprisingly good agreement between
our QMC results and the improved NRG results [which are close to, but not identical
with the data shown in the subsequent publication (Bulla et al., 2001)] is partially
accidental as the final results for QMC and NRG show slightly larger differences (cf.
subsection 3.6.3). Still, the good overall agreement between these results and (within
larger error bars) with the independent QMC results obtained by Joo and Oudovenko
(2001) indicated a resolution of the controversy towards a reliable phase diagram. In
particular, the improved NRG estimate Uc2(T = 0) = 5.86 is practically identical with
the PSCT/ED estimate Uc2(T = 0) = 5.84. These and all other published numerical
estimates for the boundaries of the MIT coexistence region at T = 0 that we are
aware of are reproduced in Table 3.1. A corresponding summary for the coordinates
of the second-order critical end point is given in Table 3.2; the latter also includes
our new QMC estimate.

The thick line in Fig. 3.32b which evolves into a dashed line at low temperatures
reflects our estimate (as of October 2000) of the true first-order phase transition line;
the final estimate (which is hardly distinguishable from the curve shown here) will
be presented after detailing the methodology in Sec. 3.6. The low-temperature part
of this curve is partially based on the assumption that Uc2(T = 0) ≈ 5.85 which is
certainly justified based on the excellent agreement between PSCT, ED, and NRG.

Leaving the historical review, let us discuss the possible origin of the remaining
discrepancies between the various QMC estimates of the boundaries of the coexis-
tence region. Tilted and upright crosses in Fig. 3.33 represent our extrapolated QMC
data (here repeated from Fig. 3.31) and QMC data corresponding to ∆τ = 0.25, re-
spectively. Evidently, the extrapolation ∆τ → 0 is important; otherwise (i.e., at
∆τ = 0.25), the coexistence region is shifted by about ∆U ≈ 0.1 towards larger
interaction and by about ∆T ≈ 0.005 towards higher temperatures.31 Interestingly,

29The comparison shown here was prepared for a conference in Grenoble (starting on October 30,
2000); on that occasion, a paper copy was also handed out to Georges. The same data (including
our estimate for the first-order phase transition line) was presented in talks in condensed matter
theory seminars in Augsburg and Mainz on 11/29/00 and 12/05/00, respectively and appeared in
a report sent to the van Neumann Institute for Computing in November 2000.

30Note that Joo and Oudovenko (2001) did not calculate the tip of the coexistence region. Instead,
they used Rozenberg et al.’s (1999) earlier estimate.

31Note that in our computations, the range of discretization parameters includes 0.1 ≤ ∆τ ≤ 0.25
even for relatively low temperatures T ≥ 0.025 (∆τmin = 0.125 for T = 0.02). Therefore, the
deviation of our best “raw” results from the extrapolated results is much smaller than shown in this
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Uc1 Uc2 method factor citation

5.1 6.6 IPT
√

2 Georges and Krauth (1993), p. 7172
5.2 6.6 IPT 2 Rozenberg et al. (1994), Fig. 10
4.7 QMC 2 Rozenberg et al. (1994), p. 10186

5.8 PSCT 2 Moeller et al. (1995), p. 2084
4.3± 0.5 5.84± 0.1 ED,PSCT 2D Georges et al. (1996), p. 66
4.0± 0.4 4.0± 0.4 RDA+ED 4W Noack and Gebhard (1999), p. 1917
5 5.88 NRG 4W Bulla (1999), p. 138/137
4.78 5.86 NRG 4W Bulla et al. (2001), p. 8, Fig. 9

Table 3.1: MIT at T = 0 in the half-filled fully frustrated Hubbard model with semi-
elliptic DOS for d → ∞. All values for Uc1 and Uc2 have been rescaled to unit variance
of the DOS by multiplying the values stated in the publications by the appropriate factor
(fourth column).

U∗ T ∗ method citation

5.02 0.088 IPT Rozenberg et al. (1994), Fig. 10
4.76± 0.04 0.052± 0.006 QMC Rozenberg et al. (1999), p. 3500
4.9263 0.09379 IPT Kotliar et al. (2000), Fig. 2
4.68 0.050 ED Tong, Shen, and Pu (2001), p. 3

0.08 NRG Bulla et al. (2001), p. 6

4.665± 0.03 0.055± 0.004 QMC this work

Table 3.2: Second order critical end point of the MIT in the half-filled fully frustrated
Hubbard model with semi-elliptic DOS for d → ∞. Rescaling to unit variance required
multiplication by a factor of 4W for NRG and a factor of 2 for the other cited results.

our estimates for ∆τ = 0.25 practically match the final results published by Joo and
Oudovenko (2001) and are fully consistent with Rozenberg et al.’s (1999) data. In
contrast, the agreement between the published data and our extrapolated estimates
is much worse. In fact, no extrapolation is mentioned in Rozenberg et al.’s (1999)
paper and an extrapolation ∆τ → 0 is explicitly stated only for two selected phase
points by Joo and Oudovenko (2001). We stress that (at ∆τ = 0.0) the metallic
solution is not stable at four out of six points where coexistence has been claimed
by Rozenberg et al. (1999). Thus, this paper contains quantitative errors; even its
qualitative correctness, i.e., the evidence for the existence of a coexistence region (at
∆τ = 0.0) cannot be derived from data shown in the publication. Only our work,
Joo and Oudovenko’s (2001) selective ∆τ studies, and Bulla’s NRG results demon-
strate that among the various scenarios shown in Fig. 3.13 for the ∆τ dependence of

comparison. However, Rozenberg et al.’s (1999) best calculations at T = 0.031 were performed with
∆τ = 0.25 and the same can be assumed for the bulk of Joo and Oudovenko’s (2001) calculations.
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Figure 3.33: MIT phase diagram: dependency of the boundaries Uc1(T ) and Uc2(T ) of
the coexistence region on ∆τ . Final results of this work for ∆τ = 0.0 (already shown in
Fig. 3.31) and ∆τ = 0.25 in comparison with Joo and Oudovenko’s (2001) results and the
coexistence points established by Rozenberg et al. (1999).

the coexistence region which appear a priori possible, the scenario of Fig. 3.13a is
realized: finite ∆τ primarily shifts the coexistence region towards larger values of U .
Consequently, the coexistence found by Rozenberg can now a posteriori be assessed
as genuine (and not as an artifact of using finite ∆τ).

Another fact established by these recent studies is that Uc1 is almost independent
of T , only slightly increasing when the temperature is lowered from T = T ∗ to T = 0.
This finding is clearly incompatible with the MIT scenario Fig. 3.10 suggested by
Kotliar which partially reconciled QMC results (at relatively high temperature) with
(zero-temperature) RDA results by assuming that Uc1(T = 0) = 4.0. Ironically,
our correction of this perception of the shape of the coexistence region validates a
posteriori the qualitative features of the IPT scenario (cf. Fig. 3.7 and Fig. 3.32),
originally supported by Kotliar (and others).

3.5.5 Double Occupancy

In this subsection, we construct an extrapolation scheme for the double occupancy
D in the metallic phase. In connection with the expression (3.19) established for
the double occupancy of the insulating phase in subsection 3.5.1, the resulting esti-
mates will allow for a determination of the difference ∆D(T, U) in double occupancy
between metal and insulator within a few percent. This data will be used in com-
bination with corresponding estimates energetic differences ∆E(T, U) (obtained in
subsection 3.5.3) for the construction of a differential equation governing the ther-
modynamic first-order phase transition line Uc(T ) in Sec. 3.6. In addition to our best
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Figure 3.34: Extrapolation ∆τ → 0 of double occupancy D in metallic phase for T = 0.04:
At small enough U , the QMC data points agree with purely quadratic least-squares fits
(lines). Since the quadratic (in ∆τ) extrapolation law is seen to break down for U = 4.8,
it is also unreliable at slightly smaller U . The inset shows the (second order) fit coefficient
which increases significantly for U → Uc2.

estimate for the double occupancy in the metal, we will also indicate approximate
functional forms for Dm(T, U) within the coexistence region which correspond exactly
to a linearized, interpolated version of this differential equation.

The difficulty in extrapolating D to the physical limit ∆τ → 0 is illustrated for
T = 0.04 in Fig. 3.34. Well within the metallic phase, the dependence of D on
∆τ follows quadratic fit curves (i.e., without linear terms). Within the range of ∆τ
shown in the plot, this observation even remains true (with strongly increased ∆τ
dependence; see inset of Fig. 3.34) up to U = 4.75. This value of the interaction is just
below Uc2 = 4.8, where the metallic phase becomes unstable, and Uc2b ≈ 4.83, where
the extrapolated energy (see Fig. 3.25) meets that of the insulator. At U = 4.8,
however, the purely quadratic extrapolation law for the double occupancy clearly
breaks down for ∆τ . 0.16. The observed irregularity not only makes it impossible
to perform the extrapolation ∆τ → 0 for fixed interaction U very close to the MIT,
but also makes the results of extrapolations for slightly smaller U suspicious. After
all, deviations from the quadratic extrapolation law might occur for ∆τ ¿ 0.1 so that
the true value of D could be lower than the extrapolated value. Therefore, reliable
extrapolations can only be performed on the basis of appropriate fit functions, each of
which approximate the QMC estimates for D(U) for some value of ∆τ in the metallic
phase. Extrapolations to the limit ∆τ = 0 are then no longer local in U and are thus
much less affected by the difficulties discussed above.

As in subsection 3.5.3, we present the results for the double occupancy sorted from
high to low temperatures, starting with T = 0.1. Due to the broad crossover at this
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Figure 3.35: Double occupancy for T = 1/10. Filled circles indicate the results of purely
quadratic ∆τ → 0 extrapolations of the QMC data (open symbols). Thin lines are guides
to the eye only. The thick portion of the double-dashed line for ∆τ = 0 (and U ≥ 4.4)
follows the universal expression (3.19) for the insulator.

temperature, no fits for the metallic-like region were attempted in Fig. 3.35. In this
figure, all thin lines are guides to the eye only. The data labeled as ∆τ = 0.0 (solid
circles) was obtained by quadratic extrapolation. The thick black line visible for
U > 4.4 represents our universal fit (3.19) for the double occupancy in the insulator.
The maximum slope of D(U) for U ≈ 4.4 supports our earlier estimate Uc2b = 4.4 for
the center of the crossover region at this temperature.

In Fig. 3.36, the almost abrupt change of slopes for D(U) indicates the proximity
to a sharp transition for T = 0.067. Here and in all following plots, the lower curve
for ∆τ = 0.0 is given by the temperature-independent fit (3.19) for the insulator.
The curves for the metallic region are parameterized in terms of their difference with
respect to the expression (3.19) for the double occupancy in the insulating phase:

Dm(T, U,∆τ) = Di(U) + AT,∆τ
Uc2b(T,∆τ)− U

1 +BT,∆τ (Uc2b(T,∆τ)− U)
. (3.20)

In particular, the differences vanish for U = Uc2b(T,∆τ) so that at these points not
only the (extrapolated) fits for the energy of metal and insulator, but also the fits
for the double occupancy of both phases coincide. Consequently, the ratio of the
differences of both pairs of observables ∆E/∆D remains finite within (and beyond)
the coexistence region which will prove useful later. The initial slope and curvature
of ∆D at U = Uc2b is controlled by the two free parameters (per curve), AT,∆τ and
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Figure 3.36: Double occupancy for T = 1/15. The lowest line follows the temperature-
independent law (3.19); all other thin lines are fits according to (3.20) to the QMC data
for the metallic region (open symbols) or its extrapolation to ∆τ = 0 (filled circle). An
additional fit (thick line below U = 4.59) is related to the linear approximation of a differ-
ential equation for Uc(T ) (see text and Sec. 3.6). The deviations between QMC data and
fit curves at the crossing points Uc2b indicate a narrow crossover from metal to insulator.

BT,∆τ . Apart from generally fitting the data extremely well, the precise form chosen
here stands out by the fact that it would lead to an exactly linear differential equation
for the first-order transition line Uc(T ) in the limit of vanishing curvature of Ei(U).
Except for the close neighborhood of approximately Uc2b − 0.02 . U . Uc2b + 0.02
around the crossing points, the QMC data is seen to be reproduced well by the fits
in Fig. 3.36. The deviations of the points for ∆τ = 0.15 at U = 4.65 and ∆τ = 0.2
at U = 4.7, however, are significant. This adds further support to our previous
conclusion that this temperature is just above the critical temperature. The thick
line extending below U = 4.59 indicates an additional fit to be used later in a linear
differential equation for the first-order line Uc(T ).32

The analogous data for T = 0.05 is presented in Fig. 3.37. The only significant
discrepancy between data and fits is seen for the insulating solution at U = 4.7. While
the deviation might be slightly exaggerated due to using a finite number of sweeps, it
is above error bars at all finite ∆τ . Note, however, that the distance between data and

32Since the coexistence region does not extend up to the present temperature, the differential
equation will find no application here. Still, some continuity is expected and found with respect to
the behavior of D and E, so that the associated data point can still be used for interpolation.
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Figure 3.37: Double occupancy for T = 1/20. QMC data (symbols) and fit curves in
analogy to Fig. 3.36. The extent of the “linearized” fit (thick curve) represents the width
of the coexistence region (at ∆τ = 0). The arrow shows the estimate for Uc obtained in
Sec. 3.6. The ∆τ dependence of the QMC data for the insulator is significant only in the
coexistence region at U = 4.7.

the fit curve for the insulating solution decreases significantly with decreasing ∆τ .33

Therefore and in view of the behavior of D observed at lower T , it is still reasonable
to assume that the ∆τ = 0 curve is correct also for the insulator. Further support
for this scenario will arise from the shape of the coexistence region. As before, the
thick double-dashed line corresponds to the linearized differential equation for Uc(T )
to be discussed in Sec. 3.6.34 Here and in the following plots, the extent of the thick
fit curve denotes the extent of the coexistence region. The arrow pointing towards
the abscissa represents the estimate for Uc (for T = 0.05) to be derived in Sec. 3.6.
It is included in this and the following plots in order to indicate the most important
parameter region for each temperature; the accuracy of the final phase diagram will
predominantly depend on small errors in ∆D and ∆E in these regions.

For T = 0.04, the good agreement between QMC data and fit functions is evident

33Obviously, the correct extrapolation could be found by performing additional, careful simula-
tions at very small ∆τ . The computational cost, however, would be enormous even for going to
∆τ = 0.05 since the proximity of the stability edge requires using a much larger number of sweeps
than needed at lower T (where up to 400 time slices were indeed used). Furthermore, the impact of
the data at this high temperature on Uc(T ) is essentially local, i.e., will only affect it visibly within
the tip of the coexistence region.

34The fact that this thick line closely matches the original fit for ∆τ = 0.0 (thin line) implies that
no accuracy will be lost by the linearization.
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Figure 3.38: Double occupancy for T = 1/25, analogous to Fig. 3.37.
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Figure 3.39: Double occupancy for T = 1/32, analogous to Fig. 3.37. For U = 4.85, where
the quality of a purely quadratic least-squares fit for D in the metallic phase (upper solid
circle) is already bad, a fit including a linear term has been added (lower solid circle). Both
estimates bracket the fit functions for ∆τ = 0.0 (double-dashed lines).
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Figure 3.40: Double occupancy for T = 1/40, analogous to Fig. 3.37.

also within the coexistence region from Fig. 3.38. Note that for U = 4.75 (which
is also our estimate for Uc, see arrow), the deviation from the insulating curve is
significantly smaller for ∆τ = 0.15 than for ∆τ = 0.2 and essentially zero already for
∆τ = 0.1. The quadratic extrapolation for the metallic solution at U = 4.75 (solid
circle) should already be close enough to Uc2b to overestimate the true value of D;
our globally systematic fit curve and its “linearized” approximation (thick portion)
are more reliable.

The data for T = 0.031 presented in Fig. 3.39 follows the expected pattern. Note
that all QMC points in the insulator are on the fit curve and that among the metallic
solutions, only the point for U = 4.92 and ∆τ = 0.16 shows negative deviations.
Since for the same interaction even ∆τ = 0.1 is on (or slightly above) its fit curve, a
remaining convergence error or the influence of a too low number of sweeps is much
more likely than an unsuitability of the fit functions. At U = 4.85, we have not only
included the result of a purely quadratic fit of the metallic solution to ∆τ = 0 (upper
solid circle), but also a least squares fit including a linear term (lower circle) in order
to indicate the range suggested by a local analysis. Again, the global fit is seen to be
superior since it takes the regular shape observed at all finite ∆τ into account and
keeps this shape also for ∆τ = 0.0.

For T = 0.025, the most important region for the determination of Uc near U = 4.9
(arrow) is already far enough below Uc2 and Uc2b so that an accuracy within the low
percent range could also be obtained from regular quadratic extrapolation. The
deviation at U = 4.9 and ∆τ = 0.1 apparent in Fig. 3.40 is slightly outside the
statistical error bars but is within the range of longer-scale fluctuations (associated
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Figure 3.41: Double occupancy for T = 1/50, analogous to Fig. 3.37. For U = 5.0, where
the quality of a purely quadratic least-squares fit for D in the metallic phase (upper solid
circle) is already bad, a fit including a linear term has been added (lower solid circle). Both
estimates bracket the fit functions for ∆τ = 0.0 (double-dashed lines).

with using only 120000 sweeps) and is too small to impact our final results visibly.
Note the good agreement of the “linearized fit” (thick line) with the original fit across
the range Uc = 4.7 to Uc2 = 4.99.

In Fig. 3.41, we have again included the result both of a purely quadratic and
linear+quadratic extrapolation, here for U = 5.0. Note that the quality of least-
squares fits is generally worse in this plot since simulations at ∆τ = 0.1 could not
be afforded. Longer and even more precise simulations would be required for under-
standing or correcting the deviation of the metallic solution for ∆τ = 0.16 at U = 5.1.
Still, the accuracy of the ∆τ extrapolated fits is very satisfactory, considering that
we are looking at the strongly correlated region at very low temperatures.

The summary of our results for the double occupancy is given in Fig. 3.42, where
the fit functions for the metal at ∆τ = 0 are drawn (thin colored lines) together
with QMC data (symbols) for interactions deep enough in the metallic phase so that
quadratic least-squares fits are reasonable. In analogy to our summarizing result
Fig. 3.30 for the energy, the thick line shows the double occupancy for the insulating
phase. The nearly straight thin line at the top indicates the result of an extrapolation
to T = 0 for the metallic phase to be detailed in Sec. 3.6.

The relative error of the estimates for ∆D implied by the results shown in Fig. 3.42
is about 10−2 in the proximity of the first-order phase transition (see arrows in
Fig. 3.36 – Fig. 3.41) for T ≤ 0.04 and is only slightly larger for T = 0.05. Such a high
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Figure 3.42: Double occupancy D vs. interaction U at ∆τ = 0. The symbols indicate
extrapolated QMC data for the metallic phase; colored lines indicate “linearized” fit curves
(thick lines in Fig. 3.36 – Fig. 3.41). The thick solid line denotes the double occupancy of
the insulator within its T -dependent stability region. The thin top line marks the ground
state double occupancy in the metal (to be determined in Sec. 3.6).

accuracy may seem surprising in view of our discussion initiated in subsection 3.5.1
and continued in the beginning of this subsection. However, the choice of suitable fit
functions has made it possible to perform a nonlocal ∆τ extrapolation (i.e., for all
values of U at the same time for fixed T ), including both physical intuition and prior
knowledge that had been obtained in subsection 3.5.3. Thus, reliable estimates of
D could be obtained even close to the MIT where naive, local extrapolations would
have failed (as illustrated in Fig. 3.34).

3.6 Results: Thermodynamic Phase Transition Line

In this section, a differential equation will be derived for the transition line Uc(T )
between metal and insulator based on the fact that both phases have the same free
energy along the transition line.

3.6.1 Differential Equation for dUc /dT and Linearization

For the Hubbard model, the free energy F and its differential dF can be expressed in
terms of energy E, temperature T , entropy S, double occupancy D, and interaction
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strength U as
F = E − TS; dF = −S dT +D dU. (3.21)

These expressions are not directly useful in the context of QMC simulations. As
pointed out in Sec. 1.3, the free energy cannot be estimated using QMC since the
importance sampling technique by construction samples the partition sum only up to
an unknown prefactor. Since E can be measured within QMC (and T is an external
parameter), this argument and (3.21) also imply the inability of QMC to measure S
directly. However, using

∂βF

∂β

∣
∣
∣
∣
U

= F + β
∂F

∂β

∣
∣
∣
∣
U

= F − T ∂F

∂T

∣
∣
∣
∣
U

= F + TS = E (3.22)

with β = 1/T , the differential may be rewritten as

d(βF (β, U)) = E(β, U) dβ + βD(β, U) dU , (3.23)

i.e., expressed in terms of observables which we have determined in Sec. 3.5. Provided
that both the metallic and the insulating solution can be continuously followed (in
general on different paths35 in the (U ,β) plane) up to a point (U1,β1) in the crossover
region where they coincide, then by integrating equation (3.23) one can calculate
βFm/i(β, U)− β1F (β1, U1) within the coexistence region and, in principle, determine
the transition line.36 In practice, however, it is likely that along these different paths
different systematic errors will contribute to the free energy estimates for metal and
insulator, respectively. Consequently, the resulting estimate for the transition line
may be systematically biased.

Systematic errors can be kept to a minimum in a scheme where differences in
observables (between metal and insulator) are only computed locally, i.e., for fixed
U and β. This may be achieved by rewriting equation (3.23) for metal/insulator

d
(
βFm/i(β, U)

)
= Em/i(β, U) dβ + βDm/i(β, U) dU (3.24)

and taking the difference

d
(
β∆F (β, U)

)
= ∆E(β, U) dβ + β∆D(β, U) dU . (3.25)

Here, ∆F (β, U) = Fm(β, U)− Fi(β, U); corresponding differences for the energy and
double occupancy are denoted by ∆E and ∆D, respectively. Since the transition
line Uc(β) is smooth and determined by ∆F (β, Uc(β)) = 0, all derivatives of ∆F also
vanish along the line Uc(β). This is true, in particular, for the differential:

d(β∆F (β, U))|U=Uc(β) = 0. (3.26)

From (3.25) and (3.26) we get

0 = ∆E(β, Uc(β)) dβ + β∆D(β, Uc(β)) dUc (3.27)

35The necessity of using different paths for metallic and insulating solutions arises from the shift
of the coexistence region with ∆τ and from the larger numerical errors of each solution near its
stability edge.

36Here and in the following, the indices m and i indicate metal and insulator, respectively.
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which is equivalent to

dUc(β)

dβ
= − ∆E(β, Uc(β))

β∆D(β, Uc(β))
(3.28)

=
1

β

(

−∆Ekin(β, Uc(β))

∆D(β, Uc(β))
− Uc

)

. (3.29)

While the second form (3.29) is somewhat more elementary, it conveys the wrong
impression that large errors should be expected due to the subtraction of numbers of
the same order of magnitude. This problem does not occur here since the numerical
error of E is significantly smaller (by about a factor of two or three) than the error
of Ekin. Therefore, we will in the following proceed with the total energy, i.e., use
(3.28). Changing variables from β to T we arrive at the final form of the differential
equation:37

dUc(T )

dT
= f(T, Uc(T )); f(T, U) :=

∆E(T, U)

T ∆D(T, U)
. (3.30)

Since Uc(T ) has to go through the tip of the coexistence region (T = T ∗) where
Uc1 = Uc2 = U ∗, the true phase transition line Uc(T ) is uniquely defined as the
solution of (3.30) satisfying the initial condition Uc(T

∗) = U ∗:

Uc(T ) = U ∗ +

T∫

T ∗

dT ′f(T ′, Uc(T
′)); T < T ∗. (3.31)

The slope of this curve is negative everywhere as we can see from the following
argument: In going from an insulator to a metal, the entropy decreases. In order for
the free energies to coincide at U = Uc(T ), the change in total energy ∆E(T, U) has
to be negative. Since the double occupancy increases at the same time, (3.30) yields
dUc(T )/dT < 0.

In principle, f(T, U) can be evaluated pointwise at finite ∆τ by calculating the
differences of D and U for fixed U and T . This was, in fact, our initial approach.38

It is, however, not applicable near the edges and in the tip of the coexistence region,
since the phase boundaries shift significantly with changing ∆τ . Consequently, in
general, not enough (if any) data points are available for an extrapolation ∆τ → 0
at fixed U .39 Furthermore, an interpolation between the grid points (in U and T ) at
some stage is unavoidable in order to integrate up the formal solution (3.31).

37Note that this differential equation is in direct analogy to the Clausius-Clapeyron equation
dp/dT = ∆Q/(T∆V ) for the vapor pressure curve p(T ), where ∆Q is the latent heat and ∆V the
volume difference between the two phases.

38This strategy yields accurate results deep within the coexistence region, where the resulting
estimates for f(T,U) are easily extrapolated to ∆τ = 0. The nearly linear dependence of f(T,U)
on U observed using this method motivated the linearization of the differential equation which we
will introduce below.

39The difficulties associated with an extrapolation of Dm to ∆τ = 0 at fixed U clearly add to the
problem (cf. subsection 3.5.5)
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Figure 3.43: Function f(T,U) which coincides with the derivative dUc /dT on the phase
transition line Uc(T ). a) “Raw data” extracted from fits of QMC data for E and D.
b) Linearized fits with the functional form f(T,U) = A(T )+43U . Circles indicate dUc /dT
of the final solution.

Therefore, very accurate results in the whole coexistence region can only be
achieved using the fit functions for Ei(U), Di(U), Em(T, U), and Dm(T, U) estab-
lished in subsections 3.5.2, 3.5.3, and 3.5.5. Among these data sets, by far the largest
error is associated with the double occupancy Dm(T, U) in the metallic phase. Figure
3.43a shows “raw” results for f(T, U) which follow from the QMC data when the
best estimate for Dm according to the 2-parameter fits (3.20) (shown as thin lines
in Fig. 3.36 – Fig. 3.41) are used. Here, the fit functions are not only shown within
(our estimate of) the coexistence region, but extend up to U = Uc2b(T ) (where the
extrapolated energy of the metal crosses the energy of the insulator). Evidently,
the dependence on U is almost linear for fixed T . Furthermore, the slope of the
curves shown in Fig. 3.43a is only very weakly dependent on T , at least within the
coexistence region. Consequently, only a small error is made when these raw results
are replaced by straight lines with identical slopes throughout the coexistence re-
gion. This is seen in Fig. 3.43b, where the thick lines (shown only for U within the
coexistence region) follow the form

f(T, U) = A(T ) + 43U . (3.32)

While the discrepancy between this linearized form and the original raw data is in
the percent range throughout the coexistence region, it is even smaller near the most
important points touched by the solution (circles) to be determined below. This
fact alone ensures that the linearized form of f(T, U) is a good interpolation for
the purpose of finding the solution Uc(T ). The particular practical advantage of
the linear form (3.32) is that the solution of the corresponding differential equation
dUc /dT = A(T )+43Uc(T ) is given by a regular integral which can even be performed
analytically using the interpolation for A(T ) that will be established later in this
section.
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Figure 3.44: Gradient field for Uc(T ) as implied by the differential equation (3.30), sym-
bolized by short solid line segments. The symbols and short-dashed lines represent the
boundaries of coexistence region and crossover region (cf. Fig. 3.31). The dotted lines show
solutions of the (linearized) differential equation with the initial condition Uc = Uc1 and
Uc = Uc2 for T = 0.05, respectively, which bracket the final solution.

Figure 3.44 illustrates that the procedure of integrating the solution towards lower
temperatures, starting at the tip of the coexistence region is inherently stable. Here,
the crosses and short-dashed curves indicate the coexistence and crossover regions
determined in Fig. 3.31. The slopes of each short solid line with center Ui, Ti is given
by the value f(Ti, Ui) which can be read off from Fig. 3.43a. Since the slope of any
solution of the differential equation (3.30) has to agree with f(T, U) at each point,
solutions practically cannot cross the slopes shown in Fig. 3.44 (within their error
bars and in the limit of vanishing lengths). The fast increase of the absolute slope
from left to right makes them act like a funnel for the integration of solutions towards
lower T . Therefore, the impact of errors in the position of the tip of the coexistence
region (and also of f(T, U) at high T ) on the solutions decays rapidly with decreasing
T . This is illustrated by the two test solutions (dotted lines) shown in Fig. 3.44 which
fulfill the initial conditions U(0.05) = Uc1(0.05) and U(0.05) = Uc2(0.05), respectively.
Although these lines, which bracket the physical solution Uc(T ), are far apart initially,
their distance is already very small for T = 0.02.

3.6.2 Low-temperature Asymptotics of Uc(T )

While the data presented so far suffices for an accurate determination of the thermo-
dynamic phase boundary Uc(T ) within the range of temperatures T ≥ 0.02 covered by
QMC simulations, the quality of an extrapolation to even lower temperatures based
on the QMC data for f(T, U) alone would be questionable. By including additional
low-temperature information, however, we will be able to reliably integrate the solu-
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tion down to T = 0. More precisely, we will first derive the asymptotic form of Uc(T )
for T → 0 analytically [which implies corresponding asymptotics for f(T, U)] and fix
its numerical parameter in a second step using various extrapolated QMC data. This
procedure will not only allow for a controlled construction of the full phase diagram,
but validate the internal consistency of our results and some underlying assumptions
at the same time.

Consequences of Fermi Liquid Theory

As we have established in subsection 3.5.3, the energy in the (low-temperature) in-
sulating phase is independent of the temperature.40 By virtue of (3.21), the same
applies to the entropy in this phase. In addition, Si is independent of U ; its value
per lattice site equals S0 = ln 2 (Georges et al., 1996; Gebhard, 1997; Kalinowski and
Gebhard, 2002). Thus, the free energy of the insulator at low T is determined by

Ei(T, U) = E0
i (U); Si(T, U) = S0 . (3.33)

Fermi liquid properties imply for the metallic phase that

Em(T, U) = E0
m(U) +

1

2
γ(U)T 2; Sm(T, U) = γ(U)T , (3.34)

where γ(U) is the linear coefficient of the zero-temperature specific heat. Using the
projective self-consistent technique (PSCT), Moeller established that Uc(0) = Uc2(0),
i.e., that the metallic solution is always stable within the coexistence region at T = 0
(Moeller et al., 1995; Georges et al., 1996). According to the PSCT, the energy
difference between metal and insulator vanishes quadratically for U → U 0

c while the
specific heat diverges,

E0
i (U)− E0

m(U) =
a

2
(U − U 0

c )2; γ(U) =
γ0

U0
c − U

. (3.35)

Since the PSCT is reliable only for exponents, not for absolute prefactors, a and
γ0 should for the moment be regarded as unknown parameters. Equating the free
energies, we conclude

0 = ∆F (T, Uc) =
a

2
(U − U 0

c )2 +
1

2
γ(U)T 2 − TS0, (3.36)

to obtain the low-temperature solution,

Uc(T ) = U 0
c −

√

2SoT

a
+O(T ) . (3.37)

Consequently, the temperature derivative of the solution has a square root divergence
at low T ,

dUc(T )

dT
= −

√

So
2aT

+O(1) . (3.38)

40Note that the temperatures under consideration are so small that exponential corrections can
be safely neglected (cf. subsection 3.5.2).
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Since the U dependence in (3.37) is regular for T → 0 (as long as U 0
c is finite), the

same must apply to the fit function A(T ) defined via (3.30) and (3.32), i.e.

A(T ) = −
√

So
2a
T−1/2 +O(T 0) . (3.39)

Using the value of S0 = ln 2, this form can be made quantitative by evaluating the
parameter a defined in (3.35) which equals the change of slope of D at T = 0 and
U = U 0

c (= U 0
c2). The PSCT yields a parameterization for the double occupancy

of the metal as Dm(T = 0) ≈ 0.015 + 0.235(1 − U/U 0
c ) ≈ 0.25 − 0.0402U , where

U0
c = 5.84 [Georges et al. (1996), p. 71]. Since a similar parameterization for the

insulator is not published, one might neglect the corresponding (much smaller) slope
of D0

i (U) in a first approximation.41 We found discrepancies when trying to reconcile
the corresponding estimate for a with our QMC estimates for A(T ) at higher T ,
even when realistic estimates for the slope of the double occupancy in the insulator
were used. In fact, it is hardly conceivable that the above ground state estimate
for Dm could be correct. The problem is that it extrapolates exactly to the correct
value D = 0.25 for U = 0, but not with the correct slope −0.0417 to be derived
below. Thus, the correctness of the cited parameterization near U 0

c would imply the
existence of at least two turning points of D(U) within the metallic phase which
appears unlikely.

Second Order Perturbation Theory and Beyond

Before we derive an independent estimate for the coefficient a on the basis of our
finite-temperature QMC data, we would like to evaluate D(U) within 2OPT. For
a general symmetric DOS, the ground state energy at half filling is given by (van
Dongen, 2000)

E(U) = − 8

2π
+
U

4
− U 2

∞∫

0

dx g4(x) +O(U 3); g(x) :=

∞∫

0

dωρ(ω)e−ωx . (3.40)

For the Bethe DOS, the function g(x) can be expressed in terms of the modified
Bessel function of the first kind and the modified Struve function,

g(x) =
In(2x)− L1(2x)

2x

x→∞−→ 1

πx
. (3.41)

The asymptotic behavior of g [which is most easily seen directly from (3.40)] can be
used in the integral for x0 & 8.42 The remaining finite integral is easily evaluated
numerically with the total result

E2OPT(U) ≈ −0.848826 + 0.25U − 0.020866U 2 , (3.42)

41This approach was apparently chosen when Joo and Oudovenko (2001) interpolated T = 0 ED
data and rescaled IPT data for deriving an approximate fit form for Uc(T ).

42We checked the accuracy of this approach by computing estimates for the total integral with
different integer intermediate points x0 above which the approximation for the Struve function is
used. For x0 = 1 . . . 10, the quadratic coefficient of E(U) converges as −0.022, −0.0209, −0.02087,
−0.020868, −0.020867, −0.0208663, −0.0208662, −0.0208662, −0.0208662.
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Figure 3.45: Ground state energy E and double occupancy D near the MIT. Due to the
temperature-independence in the insulator, both observables can be measured using QMC
without extrapolation for T in the insulating phase (upright crosses and solid lines). The
accuracy of second-order perturbation theory (2OPT, thin lines) for the metallic phase can
be improved significantly by using the third-order fit (3.44) for Em(U) and the consistent
expression (3.45) for Dm(U) (short-dashed lines) so that D and E match for insulator and
metal at U = U0

c ≈ 5.85 (circles) as predicted by PSCT. At these points, the fits yield
D = 0.01613 and E = −0.086. These fits are supported by extrapolations of the QMC
data for the metallic phase to T = 0 (slanted crosses). The dotted lines correspond to
single-parameter plain third order fits (see text).

where all digits are significant and corrections areO(U 3). The corresponding estimate
for the double occupancy is

D2OPT(U) ≈ 0.25− 0.041732U , (3.43)

with corrections of O(U 2).
The important and somewhat surprising observation that we are heading for is

that bare second-order perturbation theory gives a quantitatively reasonable de-
scription for E and D in the metallic phase at T = 0 almost up to the transi-
tion at U 0

c ≈ 5.84.43 This is seen in Fig. 3.45. Here, the solid lines represent the
(temperature-independent) QMC estimates for the energy and double occupancy (up-
per and lower plot, respectively) discussed in the previous section. Assuming that

43More precisely, 2OPT would break down at U = 5.9905 where the its estimate for D becomes
negative.
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the PSCT, NRG, and ED estimates for U 0
c are correct (cf. Table 3.1), the MIT occurs

for values of U , D, and E indicated by the large circles. These points are evidently
missed by the 2OPT solutions (faint thin lines); when compared to the noninter-
acting values, the deviations both in D and E are, however, quite small (about 4%
and 2%, respectively). Since the curves E(U) and D(U) are also related nontrivially
by D(U) = dE(U)/dU , the construction of a consistent, smooth fit that coincides
with 2OPT for small U and agrees with the insulating solutions for U = U 0

c is a
well-conditioned task. The correction to E has to be of third order in U (or higher)
in order not to change the asymptotically correct 2OPT result for U → 0. Using
a plain 3rd order correction, the requirement that both E and D match for metal
and insulator at a single point Uc is fulfilled for Em(U) = E2OPT(U) + 0.0000715U 3,
Dm(U) = D2OPT(U) + 0.0000715 · 3U 2 with U 0

c = 5.76 (dotted line in Fig. 3.45). A
smooth modification that also satisfies that U 0

c ≈ 5.85 (as computed within NRG,
PSCT, and ED) is given by

Em(U) = E2OPT(U) + 0.000062U 3
(
1 +

0.1

6.5− U
)

(3.44)

Dm(U) = D2OPT(U) + 0.000062
(

3U2
(
1 +

0.1

6.5− U
)

+ 0.1
U3

(6.5− U)2

)

.(3.45)

These fits are shown as short-dashed lines in Fig. 3.45. Both fit curves agree very
well with extrapolations of QMC data for E to T → 0 and reasonably well with
extrapolations for D. The change of slope of D at Uc implied by (3.45), (3.43), and
(3.19) is a = 0.0207. Consequently, the asymptotic behavior of the fit function A(T )
defined via (3.30) and (3.32) is

A(T ) = −4.1T−1/2 +O(T 0) . (3.46)

Low-Temperature Specific Heat and Quasiparticle Weight

Before we construct a global fit for A(T ) and, ultimately, for Uc(T ) in subsection
3.6.3, we would like to detail the extrapolation of the QMC data to T = 0 which
was used in Fig. 3.45. The symbols in Fig. 3.46 show QMC estimates for E in the
metallic phase at low temperatures for various values of the interaction U . The solid
lines represent fits of the form

Em(T, U) ≈ E0
m(U) +

1

2
γ(U)

T 2

1 + 125T 2
, (3.47)

i.e., with the two free parameters E0
m and γ for each curve. The numerical parameter

125 which controls the curvature was determined for U = 4.6 where the QMC data
is particularly precise; the resulting functional form is clearly consistent with the
remaining data as well.

The accuracy of the estimate for the linear coefficient γ(U) of the specific heat
obtained by this procedure may be checked by a comparison with the quasiparticle
weight Z using the Fermi-liquid relation (valid for semi-elliptic DOS)

Z(T = 0, U) =
2π

3 γ(U)
. (3.48)
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Figure 3.47: Extrapolation of quasiparticle weight Z, a) for ∆τ → 0 and b) for T → 0.

Since the discrete estimate (3.6) for Z becomes exact for T → 0, the QMC compu-
tation of Z at low T and its extrapolation to T = 0 is well-conditioned. The first
step of a QMC estimate, however, the extrapolation to ∆τ = 0 has to be performed
with care as we illustrate for U = 4.6 in Fig. 3.47a. Clearly, the QMC data at finite
∆τ (symbols) shows a regular dependence on ∆τ behavior only at small enough T ,
sufficiently far below the MIT. Furthermore, numerical noise makes a reliable deter-
mination of the extrapolation law difficult, especially at small T (where less accurate
data for small ∆τ is available). We found that for a large range of U and T a fixed
extrapolation law Z(T, U,∆τ) ≈ Z(T, U)+0.07 ∆τ+0.28 ∆τ 2 is sufficiently accurate.
The resulting QMC estimates for ∆τ = 0, shown in Fig. 3.47b (symbols), may be
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Figure 3.48: Quasiparticle weight Z at T = 0: QMC Eliashberg estimate for Z, ex-
trapolated for T → 0 (crosses), and estimate inferred from QMC fit for γ (cf. Fig. 3.46) in
comparison with ground state results from perturbation theory (Noack and Gebhard, 1999),
NRG (Bulla, 1999), and ED (Caffarel and Krauth, 1994).

extrapolated to T = 0 using a purely quadratic fit in T 2 (lines).
The actual check of internal consistency is performed in Fig. 3.48. Here, large

tilted crosses denote the direct QMC estimates of Z via the discrete difference ex-
pression (3.6) (in terms of the self-energy at the first Matsubara frequency) using the
extrapolations illustrated in Fig. 3.47. Circles indicate the QMC estimates following
from (3.48) and from the values for γ implied by the fits shown in Fig. 3.46. The
good agreement between these sets of data confirms the internal consistency of our
QMC estimates. Their reliability is further supported by the good agreement with
estimates for Z obtained from NRG calculations (Bulla, 1999) (small crosses and
solid line) and ED calculations (Caffarel and Krauth, 1994). The accuracy of these
methods is, in turn, supported by perturbation theory of 2nd and 4th order [Noack
and Gebhard (1999); see inset of Fig. 3.48]. The verification of the correct asymptotic
slope of the fit curves shown in Fig. 3.46 implies the absence of significant systematic
errors for the extrapolated ground-state energies. Therefore, the small deviations
between the QMC estimates for E and the corresponding fit curve shown in Fig. 3.45
strongly support the accuracy of our ground state expressions (3.44) for Em(U) and
(3.45) for Dm(U) as well as the resulting estimate for a.

3.6.3 Full Phase Diagram

So far, we have in this section derived a differential equation for the thermody-
namic first-order transition line Uc(T ), i.e., dUc(T )/dT = f(T, U), seen that a linear
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ferential equation for Uc(T ) (see text). The correction to the asymptotic low-temperature
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approximation f(T, U) = A(T ) + 43U is reasonably accurate, and determined the
asymptotic low-temperature behavior for A(T ). The remaining task is finding an
accurate interpolating fit form for A(T ) which can then be solved with the suitable
boundary condition. Using the observation that A(T ) =

√

ln 2/(2a)T−1/2 +O(T 0) it
might seem most natural to successively include higher and higher orders of T 1/2 in
a parameterization of A(T ) until it matches the QMC data for the whole coexistence
region. It is, however, not clear that few orders suffice for a description up to the
critical end point where a perturbation series might even break down. On the other
hand, we only need a smooth interpolation of QMC data at high temperatures; an
potentially unstable extrapolation is only needed below the lowest QMC data point
at T = 0.02. Specifically, we have chosen the parameterization

A(T ) = −4.1T−1/2 + A1 + (A2T )1/2 + (A3T )4 (3.49)

with

A1 = −220.68 , A2 = 21170 , A3 = 18.7 , (3.50)

i.e., introduced the new parameters A1 and A2 for the two subleading terms in a
systematic expansion plus a single term of much higher order parameterized by A3.
This fit is shown as solid line in Fig. 3.49. Evidently, it matches the QMC data
(circles) quite accurately. In the inset, the asymptotic square-root singularity has
been subtracted from A(T ). Even at this scale no deviations of the full fit (solid line)
from the QMC data is visible. In contrast, a fit including only terms up to order T 1/2

(i.e., with A3 = 0) can only reproduce the low-temperature data (dashed line).
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Generally, the solution of a linear differential equation can be written as a regular
integral. Specifying the initial condition as Uc(T = 0) = U 0

c , we have here

Uc(T ) = e43T
(

U0
c +

T∫

0

dT ′e−43T ′

A(T ′)
)

. (3.51)

With A(T ) given by (3.49) and the parameters stated above, this integral can even
be performed analytically. Since the derivation is both lengthy and straightforward,
it is omitted here. Adjusting the initial condition so that the solution goes through
the tip of the coexistence region leads to U 0

c ≈ 5.795. This value is smaller than the
value U 0

c ≈ 5.85 obtained from PSCT, NRG, and ED and used in our ground state
fits for E and D. In our view, the observed discrepancies reflect the limits of the
linear approximation for the dependency of f(T, U) on U . While deviations from the
linear form are small within the coexistence region, i.e., in the range 4.7 . U . 5.0,
this need not be the case for U → U 0

c . Still, the deviation of about 6% (if measured
from the last direct QMC data point at U ≈ 5) is surprisingly small considering the
various potential sources of errors.44

The full phase diagram of the half-filled Hubbard model with semi-elliptic DOS
in d → ∞, the main result of this chapter, is shown in Fig. 3.50. Here, crosses and
thin lines indicate the boundaries of the crossover and coexistence region as already
seen in Fig. 3.31. The true thermodynamic first-order phase transition line computed
in this section, i.e., the solution of (3.51) for the fit defined by (3.49) and (3.50) is
drawn as a thick line in Fig. 3.50. It is fully based on QMC data at least in the
range T ≥ 0.02 where direct QMC estimates for f(T, U) are available. The dashed
line style used below this range is a reminder that the PSCT/ED/NRG estimate of
U0

c ≈ 5.85 was used at some stage of the derivation of the low-temperature form of
Uc(T ). The various numerical checks performed on the basis of extrapolated QMC
data suggest, however, that the impact of possible errors in this external input on
our final result is minimal.

A final test of consistency can be performed on the basis of the full solution Uc(T )
by computing an additional term in its low-temperature asymptotics. Then, (3.37)
is refined as

Uc(T ) = U 0
c −

√

2SoT

a
+

γ0

4S0

T +O(T 3/2) , (3.52)

where all symbols are known from subsection 3.6.2. Thus, the linear coefficient of
Uc(T ) can be compared with asymptotic ground state results for the linear coefficient
of the specific heat γ(U) and [using γ = 2π/(3Z)] also with ground-state estimates of
the quasiparticle weight Z. This comparison is shown in Fig. 3.51. In Fig. 3.51a, the
coefficients of the contributions of order T and T 3/2 to Uc(T ) are determined as 28
and −100, respectively. Consequently, consistency demands that γ(U) ≈ 72/(U 0

c −U)

44An even better agreement at small T could have been achieved by using a larger leading coeffi-
cient of the square-root divergence in A(T ), i.e., a smaller value of a. The latter would be consistent
with the results of our QMC extrapolations to T = 0 if the curvature of the double occupancy was
strongly enhanced near U 0

c . Such behavior is certainly possible as seen in the NRG curve for Z(U)
in Fig. 3.48.
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Figure 3.50: Final MIT phase diagram: Above the critical point (with coordinates U ∗ =
4.665 and T ∗ = 0.055), increasing interaction U causes a smooth transition from a metal
towards an insulator; the change is most rapid within the crossover region. For T < T ∗,
the metallic phase is thermodynamically stable for U ≤ Uc, but remains a well-defined
metastable solution of the DMFT equations for Uc < U ≤ Uc2. Conversely, a well-defined
insulating phase solves the DMFT equations for U ≥ Uc1, but is thermodynamically stable
only for U ≥ Uc. The QMC data (crosses) and thin blue lines are identical to Fig. 3.31.
The thick blue line (partly dashed) represents the QMC result for Uc(T ) obtained in this
section. Faint grey lines extrapolate the QMC data for Uc1 and Uc2 to T = 0.

for U → U 0
c . The agreement with T = 0 NRG data is reasonable. Note that the

curvature of γ−1(U) has to be large near U 0
c in order to reconcile the data in the

range U < 5.2 with a value of U 0
c ≈ 5.85. Therefore, the slope near U 0

c is necessarily
much smaller than at lower U . 5.2. Still, the NRG predictions near U 0

c seem a
bit low, in particular when interpreted in terms of γ−1(U) which might explain the
remaining discrepancy in comparison to our linear fit. So our results have indeed
passed a nontrivial test.

While our method of determining the position of the first-order phase transition
line on the basis of QMC data represents the first serious successful attempt of a
controlled comparison of free energies for Hubbard-like systems, the first publication
of a quantitatively correct result for Uc(T ) is due to Tong et al. (2001). Their re-
sults for Uc1, Uc, and Uc2, shown as circles in Fig. 3.52 became publicly known (as
preprint) in late May 2001, about half a year after our first results had been presented
(cf. footnote 29 on page 111). With the exception of our lower estimates for Uc1(T ),
the agreement with our final QMC results (crosses and blue lines) appears nearly
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perfect. In particular, the curves for Uc(T ) are on top of each other for T ≥ 0.025.
The discrepancy for lower temperatures is also small; still, it exceeds the uncertainty
of our results. This is illustrated in the inset of Fig. 3.52 where our original estimate
of October 2000 is also shown. Even though the inclusion of additional QMC sim-
ulations and a refinement of the extrapolation and fitting methods have shifted our
estimates of the extent of the coexistence region and of the position of the critical
point considerably, the old and new estimate of Uc(T ) agree within linewidths in the
low-temperature range. In comparison, Tong et al.’s (2001) result deviates markedly.

The excellent overall agreement between both sets of results shown in Fig. 3.52 is
even more surprising in view of the fact that the methodology employed by Tong et al.
(2001) is not exact. It is based on the replacement of the original DMFT problem
by a modified set of self-consistency equations. In order to obtain a result for some
interaction U , an impurity problem is solved for some different interaction U ′. Up to
a constant offset, the shift U ′ −U is taken proportional to the midpoint-value of the
imaginary-time Green function G(β/2) which is here regarded as order parameter
(which implies a self-consistency condition for U ′). Since the absolute value of the
order parameter is larger within the metallic phase throughout the coexistence region
(with decreasing difference towards the critical end point), the overlap in terms of U ′

can be reduced until it vanishes by choosing the proportionality constant sufficiently
large. The solutions of the modified self-consistency problem then becomes not only
unique in terms of U ′, but a new solution appears which continuously spans the gap
in terms of U ′ between the solutions associated with the coexisting solutions of the
original problem. For the modified problem, all observables are smooth functions of
U ′. When folding back the results into the original parameter space (i.e., by plotting
the results in terms of U rather than U ′), the additional solution is interpreted as
a third, thermodynamically unstable, phase; observables measured for the modified
problem appear as smooth s-shaped curves. This is seen in in Fig. 3.53, where
full symbols represent Tong et al.’s (2001) results for the double occupancy. Apart
from the square-root singularity of the metallic solution at Uc2 suggested by this
method and from the additional unstable solution, the main difference in comparison
to our QMC results is a shift towards larger values of D. This discrepancy is highly
significant deep in the insulating phase (say: for U ≥ 5.6) where the error of the QMC
results is of the order 10−4, i.e., within linewidth. At the ground state transition point
U0

c ≈ 5.85, Tong et al. predict D ≈ 0.02 which is far above our estimate D ≈ 0.0161
and the PSCT result D ≈ 0.015. Furthermore, the temperature dependence in
this region is several orders of magnitude too large and is of the wrong sign. This
observation already points to the main problem of the method: it cannot be exact
since the impurity model is in general solved at a shifted interaction U ′ instead of
U . As noted in Sec. 4.6, the second moment of the self-energy is independent of the
hybridization and only depends on the interaction on the impurity, equaling U 2/4.
For the Bethe DOS, this second moment also determines the second derivative of
G(τ) at τ = 0. Consequently, the measurements of G(τ) performed by Tong et al.
must suffer from systematic errors due to shifting the interaction, regardless of details
of the self-consistency scheme (which influences the hybridization function). Still, the
high accuracy of the final results cannot be accidental. In our view, the qualitative
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Figure 3.53: Double occupancy: Full symbols connected by thick lines represent results
obtained using the approximate transformation technique (Tong et al., 2001). The non-
unique part of the curves for T ≤ 0.05 is interpreted as a set of metallic, unstable, and
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using a Maxwell-construction which includes the unstable solution (vertical line at U ≈ 5.2
for T = 0.01). Empty symbols and thinner lines show the QMC results for the metallic
phase; the thick black line shows the QMC result for the insulating phase (cf. Fig. 3.42).

scenario shown in Fig. 3.53 is plausible, provided that a third solution of the DMFT
equations exists. Then, the knowledge of the approximate shape should suffice for
a reasonably accurate estimate for Uc(T ) within the range spanned by Uc1(T ) and
Uc2(T ). An even more direct method for the comparison of free energies will be
proposed in subsection 3.7.2.

Figure 3.54 shows a comprehensive comparison of results for the MIT in the
half-filled fully frustrated Hubbard model with semi-elliptic DOS in d = ∞. One
important point that should be conveyed by this (admittedly somewhat busy) figure
is the convergence of recent estimates for the boundaries Uc1 and Uc2 of the coexistence
region and the significant improvement over old IPT and QMC results. Thus, the
controversy stirred by Schlipf et al.’s (1999) paper has lead to secured knowledge of
the properties of this model with unprecedented accuracy. Among the more recent
results, those obtained by Joo and Oudovenko (2001) are least precise; in fact, their
estimates for Uc2 are above upper bounds established in this work (cf. Fig. 3.31 and
Fig. 3.32b). Low-temperature information is only provided by Bulla et al. (2001)
and Tong et al. (2001) with apparently about equal precision; the agreement with
our QMC data for T ≤ 0.025 is excellent. The origin of the discrepancy between
NRG and the other methods near the tip of the coexistence region at T ≈ 0.05 is
unclear; possibly, the systematic NRG error (due to the finite energy discretization
Λ̃ = 1.6) is most significant in this temperature range. Still, the available data clearly
supports the high accuracy of our QMC results.

A second point of hardly minor importance is that no qualitatively correct pre-
diction for the first-order transition line preceded our first estimate (cf. Fig. 3.32b);
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estimates [Rozenberg et al. (1994), Georges et al. (1996)]. In the low-temperature region,
thinner lines represent Uc1 and Uc2. Thick lines show calculated first-order lines Uc(T )
[this work, Tong et al., Georges et al.] with the exception of Joo et al.’s estimate [with
Uc(T ) ≈ Uc2(T ) for T . T ∗] which is based on a rescaling of the IPT curve and a fit to
ground state data. For ground state data, see Table 3.1; subsets of the finite-T data are
shown in Fig. 3.7b, Fig. 3.9, Fig. 3.32b, Fig. 3.33, Fig. 3.50, and Fig. 3.52. For Rozenberg
et al.’s (1999) QMC results on coexisting phases (not shown here), see Fig. 3.32a and
Fig. 3.33.

since Tong et al.’s method is approximate (see above), our final curve shown in
Fig. 3.54 is still the only controlled (and even numerically exact) result. In fact,
both the original (cf. Fig. 3.7a) and the later IPT estimates wrongly implied that
Uc(T ) ≈ Uc1(T ) for T . T ∗. The implication of Joo et al.’s fitting and scaling pro-
cedure that Uc(T ) ≈ Uc2(T ) for T . T ∗ is closer to the truth, but still qualitatively
incorrect. Only the recent independent results of this work and by Tong et al. provide
significant insight with regard to the position of Uc(T ).

3.6.4 Implications of Partial Frustration

After having established the MIT scenario in the fully frustrated case (for semi-elliptic
DOS), the interesting question arises what the full phase diagram would look like for
partial frustration. In this context, we have to distinguish between frustration at
constant DOS and the more generic case that the introduction of frustrating bonds
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Figure 3.55: Schematic phase diagrams of models with semi-elliptic DOS and varying
degrees of frustration. a) fully frustrated case with first-order paramagnetic MIT (thick
solid line) for 0 ≤ T < T ∗. b) weakly frustrated case with second-order magnetic transition
(dashed line); no transitions within paramagnetic or within AF phase. c)-h): stronger
frustrated case with Tmax

N < T ∗. c) first-order line ends on smooth Néel curve. d) first-
order MIT crosses smooth Néel curve. e) TN higher on metallic side of MIT line; no
implications for AF phase (shaded) intended. f) TN higher on insulating side of MIT line.
g) TN higher on insulating side of MIT line; MIT line shifted in intermediate temperature
region. h) speculative scenario for full phase diagram: a single first-order MIT line extends
from (U∗, T ∗) to (0, 0); it agrees with the fully-frustrated line at large T (solid line) and
deviates below (thick short-dashed line). For the partially frustrated model, only scenarios
b) and g) (with the possible completion h)) appear likely (see text). The MIT line of
the fully frustrated model is drawn as faint thin line for comparison where it is does not
represent a transition.

also leads to an asymmetry of the DOS.

Frustration at constant semi-elliptic DOS

Within the DMFT, the lattice influences properties of homogeneous phases only via
its (noninteracting) DOS. Thus, the thermodynamics of a partially frustrated model
with semi-elliptic DOS agrees with that of the fully frustrated model considered so far
within its paramagnetic phase.45 In the following, we will derive the qualitative char-
acteristics of the full phase diagram expected for such a model. For sufficiently small
frustration, the first-order MIT line present in the fully frustrated model (Fig. 3.55a)
is completely hidden by the low-temperature AF phase; then, the phase diagram
is qualitatively unchanged from the unfrustrated case as shown in Fig. 3.55b. For

45While the claim (Rozenberg et al., 1995) that uniform NNN hopping on the Bethe lattice leaves
the DOS unchanged was contradicted in subsection 2.2.2, fully disordered hopping on the NNN
bonds of a Bethe lattice constitutes a realization of such a model with variable disorder.



140 3. Mott Metal-Insulator Transition in the d→∞ Hubbard Model
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Figure 3.56: Scenarios for the ending of a first-order line: a) Upon approaching the end
point (from bottom to top), the jump in the derivative of F (i.e., the jump in D) decays to
zero; at the end point, the transition is of second order. b) Abrupt resolution of the kink
in F or discontinuity in D (bottom lines) into a crossover region (broadening towards the
top line).

sufficiently strong frustration the maximum Néel temperature Tmax
N becomes lower

than the critical temperature T ∗ of the fully frustrated model. Then, a paramagnetic
first-order MIT takes place at least for Tmax

N ≤ T < T ∗. Assuming a smooth curve
TN(U) leads to a phase diagram as shown in Fig. 3.55c. However, the energy differ-
ence on the MIT line between metallic and insulating solution is then still finite when
reaching the second order line towards AF order, i.e., the Néel temperature. Thus,
the first-order line cannot simply stop at this point. While the abrupt evolution of a
first-order line into a crossover region (the width of which decays to zero towards the
end point) as shown in Fig. 3.56b appears to be thermodynamically consistent, such
a scenario requires an abrupt change in D for at least one (here: both) of the solutions
at the end point. This, in turn, implies a change of order one in the corresponding
solution G(iωn) upon an infinitesimal variation of U and/or T which violates the
assumptions of a Ginzburg-Landau theory (cf. subsection 3.7.1). Consequently, we
will discard this possibility. In contrast, the crossing of a first-order MIT line with a
smooth Néel curve as shown in Fig. 3.56d is a priori possible.

However, the Néel curve of transitions between paramagnetic and AF phases
cannot be assumed to be a smooth, continuous function TN(U) at a first metal-
insulator transition. This follows from the fact that there are no precursor effects of
magnetic order within the DMFT. Consequently, the antiferromagnetic susceptibility
is determined by local properties of the homogeneous phase alone. Since the metallic
and insulating phases are fundamentally different at the MIT and correspond to
different fixed points of the self-consistency equations, it is hardly conceivable that
the antiferromagnetic susceptibility diverges in both phases for exactly the same
temperature T [on the MIT line Uc(T )]. As a result, we must expect a discontinuity
(at least of the first derivative) or a non-uniqueness of the function TN(U) at the MIT
as shown in Fig. 3.56e and Fig. 3.56f. In the insulating phase, D is smaller so that
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the local moment (with 〈(n↑−n↓)
2〉 = 1− 2D for half filling) is larger; consequently,

the ordering temperature should be higher in this phase which favors Fig. 3.56f over
Fig. 3.56e. In both cases, the first-order MIT line becomes part of the boundary of
the AF phase in the intermediate temperature range.

Still, the assumption implicit in Fig. 3.56f (and Fig. 3.56g) that the MIT line re-
mains unchanged from the fully frustrated case even when one of the adjacent phases
is antiferromagnetic is clearly wrong. Considering that the free energy decreases in
the AF phase with increasing order parameter, i.e., decreasing T , the phase with
the higher Néel temperature must widen so that the MIT line shifts as illustrated in
Fig. 3.56g. We stress that the continuity of D and E within the metallic phase along
this line and across the second-order Néel curve within the insulating phase implies a
continuous first derivative of the MIT curve Uc(T ). In principle, a second-order end
point of the first-order MIT line at the lower Néel temperature appears possible; how-
ever, at least a discontinuity of the order parameter would have to continue towards
lower T or to evolve into a crossover region analogous to the case discussed above
in connection with Fig. 3.56c; furthermore, such a coincidence appears nongeneric.
Generically, one has to expect a continuation of the first-order line within the AF
phase as shown in Fig. 3.56h. This diagram contains five different phase transitions;
among these, all metal-insulator transitions are of first order (i.e., PM-PI, PM-AFI,
and AFM-AFI) while the remaining transitions (PM-AFM and PI-AFI) are of sec-
ond order. The first-order line is continuously differentiable. The topology of this
diagram agrees with the phase diagram proposed by Rozenberg, Kotliar, and Zhang
[Fig. 43 in Georges et al. (1996)]; however, the details of the latter, in particular the
ending of the first-order MIT in the paramagnetic phase on a (roughly perpendicular)
Néel curve, are thermodynamically inconsistent.

The slope of the MIT line Uc(T ) at low T depends on the sign of the ratio ∆E/∆D
of differences in energy and double occupation between the AFM and AFI phases (cf.
Sec. 3.6). In contrast to the PM-PI transition, both signs appear possible for the
AFM-AFI transition (possibly depending on the degree of frustration); the positive
slope shown in Fig. 3.56h for T → 0 reflects an arbitrary choice rather than a
prediction. Note that our scenario is consistent with ground state ED calculations
performed for a frustrated model with semi-elliptic DOS (Chitra and Kotliar, 1999).
For increasing frustration, both Néel temperatures along the MIT line are reduced.
Then, the AFM phase might disappear before the AFI phase is completely suppressed.
In any case, the full paramagnetic MIT line calculated in the previous section is
recovered as soon as AF order is destroyed for all U < U 0

c2b.

Frustration by longer-range hopping

In generic cases, longer-range hopping suitable for causing magnetic frustration also
leads to an asymmetric DOS, at least in absence of disorder (cf. subsection 2.1.3 and
subsection 2.2.2). In the following, let us assume that t′∗ parameterizes such type
of hopping and, consequently, the degree of frustration and the modification of the
DOS. Several scenarios come to mind:

1. The Mott transition disappears (even in a computation for the homogeneous
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Figure 3.57: Schematic phase diagram for frustration by longer-range hopping. a) In the
unfrustrated case, a paramagnetic MIT line (faint thin line) is present only for a calculation
restricted to the paramagnetic phase; in an unrestricted calculation, it is hidden by the low-
temperature AF phase (below the Néel curve, dashed). b) and c): Increasing frustration
suppresses both the AF phase and the MIT line (obtained in a restricted calculation) so
that the latter never becomes thermodynamically relevant.

phase) and a smooth crossover develops for any |t′∗| > 0.

2. The first-order Mott transition survives sufficiently strong finite microscopic
frustration with no or only a minor change of the critical temperature T ∗ so
that TN < T ∗.

3. The Mott transition coexists with NNN hopping, but with T ∗ < TN(U ∗) for all
hopping strengths t∗ as illustrated in Fig. 3.57 (with increasing frustration from
left to right). The MIT line (computed in the enforced homogeneous phase)
never reaches the true homogeneous phase.

Since the first suggestion implies changes of order one in solutions of the DMFT
equations for an infinitesimal change of the DOS, it may be safely excluded. The
second scenario leads to the same conclusions as the case of frustration at constant
DOS studied above. The third scenario comprises only a single phase transition line,
the Néel curve. In fact, this least interesting possibility seems to apply at least for
the DMFT treatment of the cubic lattice with NNN hopping. Here, T ∗ is strongly
suppressed (from about T ∗ = 1/25 to T ∗ = 1/35) by introducing moderate frustration
(t′∗/t∗ = −0.25) according to recent QMC results (Knecht, 2002).

3.7 Landau Theory and Criticality

In this section, we will study some implications of Landau theory. In subsection 3.7.1,
we introduce an explicit representation of the lattice contribution to the Ginzburg-
Landau free-energy functional for semi-elliptic DOS. Using this formalism, we show
that each step of a direct iteration of the DMFT equations proceeds downhill, i.e.,
opposite to the gradient (with respect to the hybridization function) of the free energy.
Based on this finding, a new method for evaluating free energy differences between
coexisting phases within the DMFT is proposed in subsection 3.7.2. In subsection
3.7.3, we discuss to which degree critical behavior should impact or become visible
in numerical calculations as performed in this work.
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3.7.1 Free Energy Functional for the Bethe Lattice

Within the DMFT, the free energy per particle can in the general homogeneous case
be written as (Georges, Kotliar, and Si, 1992)

F = Fimp − 2T
∑

n

[

lnG(iωn) +

∞∫

−∞

dε ρ(ε) ln
(
iωn + µ− Σ(iωn)− ε

)]

. (3.53)

Here, Fimp is the impurity part corresponding to (1.34). We wish to extract an
explicit expression for the lattice contribution. For the Bethe lattice, we have iωn +
µ − Σ(iωn) = t∗2G(iωn) + 1/G(iωn). Therefore, the lattice contribution can be
explicitly written in terms of the Green function Gn ≡ G(iωn). Its derivative reads

− 1

2T

∂

∂Gn

(F −Fimp) =
1

Gn

+
(

t∗2− 1

G2
n

)
∞∫

−∞

dε ρ(ε)
1

t∗2Gn +G−1
n − ε

= t∗2Gn . (3.54)

Consequently, the free energy may be expressed for a semi-elliptic DOS as

F = Fimp − t∗2T
∑

n

G2
n . (3.55)

For consistency with Kotliar et al. (2000) we continue the discussion in terms of the
hybridization function ∆n ≡ ∆(iωn) = iωn + µ− G−1

n . The impurity equation (1.31)
is then equivalent (at the self-consistency) to

Gn =
1

2T

∂Fimp[T, U,∆]

∂∆n

. (3.56)

Since for the Bethe lattice ∆n = t∗2Gn, the total free energy may also be written as
a functional of the hybridization function

F [T, U,∆] = −T
∑

n

∆2
n

t∗2
+ Fimp[T, U,∆] . (3.57)

The important point is that this Ginzburg-Landau functional FGL ≡ F [T, U,∆] is
defined (and real valued) for an arbitrary hybridization function. While the following
considerations apply for arbitrary filling, we find it convenient to introduce explicitly
real-valued notation which is only valid for half filling. Using the short hand notation
O′′ ≡ ImO we then have

(
∇∆′′F

)

n
≡ ∂F [T, U,∆′′]

∂∆′′
n

= −2T
(
G′′
n[T, U,∆

′′]− ∆′′
n

t∗2

)
(3.58)

= −2T
(
G′′

new(iωn)−G′′
old(iωn)

)
. (3.59)

Here, G′′
n[T, U,∆

′′] ≡ G′′
new(iωn) denotes the (new) solution of the impurity model for

given ∆′′
n/t

∗2 ≡ G′′
old(iωn). Eqn. (3.59) implies that each step of a direct iteration

scheme (cf. subsection 3.2.2) advances G exactly opposite to the gradient of F , i.e.,
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downhill.46 If ∇∆F changes slowly on the scale of the step length, we can approximate
the change in F by the first term in a Taylor expansion:

Fnew ≈ Fold − 2T t∗2
∑

n

(
G′′

new(iωn)−G′′
old(iωn)

)2
< Fold . (3.60)

Consequently, the free energy of the new solution is lower for sufficiently small step
size.

As a slightly alternative derivation of an equivalent result, let us consider the
second derivative of the free energy functional:

t∗2

2T

∂2F [T, U,∆]

∂∆′′
n∂∆′′

m

= −t∗2 ∂G
′′
n

∂∆′′
m

+ δmn (3.61)

∂G′′
new(iωn)

∂G′′
old(iωm)

= δmn −
t∗2

2T

∂2F [T, U,∆]

∂∆′′
n∂∆′′

m

∣
∣
∣
∣
∆=Gold

. (3.62)

Since the matrix of the second derivatives on the right hand side has only positive
eigenvalues47 near a minimum of F , the fixed point method is contracting (as long
as all eigenvalues are smaller than 4T/t∗2) and is, thus, convergent to thermodynam-
ically (locally) stable solutions. Another interesting consequence of these considera-
tions for the iteration process is that the error decreases exponentially for the direct
scheme in the neighborhood of a solution ∆0 where the free energy is quadratic in
∆ − ∆0. We have derived, but omit, the equivalent to (3.62) for the conventional
iteration scheme (3.1). In this case, the iteration definitely does not proceed down-
hill and, therefore, coexistence regions might indeed be underestimated. After noting
the connection between convergence properties of iteration schemes and the behavior
of the free energy functional, we performed additional numerical simulations in the
coexistence region using the direct scheme. These indicated, however, no significant
increase in the resulting estimate for Uc2 in comparison to the conventional iteration
scheme.

3.7.2 Direct Evaluation of Free Energy Differences

Another important consequence of the discussion of subsection 3.7.1 is that the gradi-
ent of the free energy with respect to the hybridization function ∆ may be integrated
along a line between two solutions (for fixed U and T ). The result is then nothing
but their free energy difference. The integration curve is arbitrary (within a subspace
compatible with analytic constraints on ∆(iωn)); a convenient choice is a straight line,
i.e., a convex linear combination of the converged Green functions. For metallic and
insulating solutions denoted by subindex “m” and “i”, respectively, we define

∆λ := t∗2Gm + λt∗2(Gi −Gm); 0 ≤ λ ≤ 1 . (3.63)

46While this is strictly true only for an exact solution of the impurity model, the statistical noise
cancels out on average due to the linear dependence for a numerically exact method like QMC. The
asymptotic noise in the solution decreases with increasing accuracy, i.e., an increasing number of
sweeps. Only in the case of multiple solutions, fixpoints may be lost due to too much noise.

47Note the advantage of our explicitly real-valued formalism at this point: written in terms of
∆n = i∆′′

n all eigenvalues would be negative, which we found counter-intuitive.
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Figure 3.58: Illustration of an algorithm for direct evaluation of the free energy difference
between two solutions A and B. Intermediate solutions are generated on a line 0 ≤ λ ≤ 1,
where λ = 0 corresponds to solution A and λ = 1 to solution B. The derivative dF/dλ is
computed on a grid λi (circles) by solving a series of specially constructed impurity models
using, e.g., QMC. Integration (insets) then yields the difference in free energy (measured
from solution A). a) Possible result for a phase point on the first order line, where both
solutions A and B have the same free energy; b) for a phase point where A has the higher
free energy.

Then, the free energy difference is given by the integral

Fi − Fm =

1∫

0

dλ
dF

dλ
, (3.64)

where

dF

dλ
= −2T

∑

n

(
t∗2G′′[T, U,∆λ](iωn)−∆′′

λ(iωn)
)(
G′′

i (iωn)−G′′
m(iωn)

)
(3.65)

and which may be evaluated on a grid. When on each grid point multiple QMC
measurements G[T, U,∆λ]i are performed, even the error of the projection of the
gradient in the “solution direction” may be evaluated so that a corresponding (sta-
tistical) error for the free energy difference is easily computed. Note that given the
two converged solutions, the computation of the free energy difference within this
scheme is completely parallel since no more self-consistency is involved. Another
practical advantage of this method is that it checks the convergence of the existing
solutions. This is illustrated in Fig. 3.58, a made-up example. Green circles indicate
QMC estimates of the true derivative (solid line) of the free energy along the inte-
gration line. The limiting solutions (at λ = 0 and λ = 1) are indeed stable (gradient
vanishes with positive slope), at least along the interpolation direction. The position
of the intermediate fixed point only indicates a maximum of F in the one-dimensional
subspace under consideration; in general it will not correspond to a true maximum
of F . Integrating up the solution (insets) shows that in Fig. 3.58a both solutions are
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stable, i.e., this phase point is on the first-order line while in Fig. 3.58b, the solution
corresponding to λ = 1 is only metastable since the free energy is much higher (in-
set). Even though the comparatively more conventional method of pinpointing the
first-order transition line used in our numerical calculations also worked well, the new
method suggested here seems significantly superior since it is fully local in U and T
and should be used in future work.48

Integrating the free energy in the solution space may also be useful for an absolute
determination of F using some reference system. In particular, the impurity model
corresponding to a Lorentzian DOS can be solved analytically and may serve as
a reference point. Finally, the concept can obviously be generalized for arbitrary
lattices. While for these cases, the lattice contribution to the free energy will have
to be computed numerically, the additional cost is still negligible in comparison with
the effort for solving the impurity model.

3.7.3 Critical Behavior Near the MIT

Two different aspects of criticality are potentially relevant in the context of studies
of the Mott metal-insulator transition: On the one hand, observables may show
singular behavior (i.e., have divergent slope as a function of T or U) near critical
points or critical lines. On the other hand, critical slowing down of the iterative
DMFT convergence process may arise within some regions of the parameter space.49

In principle, “raw” QMC results (i.e., results for fixed finite ∆τ) could be negatively
impacted by critical slowing down while the accuracy of extrapolations and fits could
suffer from our neglect to take singular behavior explicitly into account. We will in
this subsection discuss both effects and their relevance to the QMC studies presented
earlier in this chapter.

As pointed out by Kotliar et al. (2000), a second-order critical end point is sig-
naled within the DMFT by the appearance of a single zero eigenvalue m0 of the
fluctuation matrix (3.61) of the Ginzburg-Landau functional FGL.50 Under the as-
sumption that this matrix smoothly depends on the hybridization function ∆n and
on the parameters T and U , the associated eigenvector is well-defined also in the
vicinity of the critical end point where it represents a soft mode. The associated
coefficient η0 of an expansion of ∆n in terms of the eigen basis of the fluctuation
matrix then determines the critical behavior. In principle, critical exponents may
be calculated from Taylor expansions in η0. According to Kotliar et al. (2000), the
parameter η0 may be replaced by another parameter η which fulfills a cubic equation
without quadratic term, pη + cη3 = h, near the critical point. As a consequence,
the double occupancy is predicted to show cubic-root behavior near the critical point

48As pointed out in more detail in Sec. 3.6, the transformation technique used by Tong et al. (2001)
for determining the thermodynamic MIT line is directly related to the concepts of this subsection.
In contrast to the method suggested here, however, the transformation technique incorporates an
approximation.

49Note that only the first consequence is strictly a property of the model; critical slowing down
could in principle be overcome by more advanced iteration techniques.

50All other eigenvalues are, then, negative since the minimum of FGL is unique for temperatures
at or above the critical point (cf. subsection 3.7.1).
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Figure 3.59: a) Double occupancy versus U for T slightly below (top set or
curves/symbols) or above T ∗ (lower 3 data sets, with increasing T towards the bottom)
as estimated from QMC (circles) and IPT (thin lines). Thick lines represent fits accord-
ing to the Ginzburg-Landau theory. b) IPT density of states at the Fermi level versus T
for U = 2.46316 ≈ U ∗

IPT. The insets are irrelevant for our discussion. Both figures are
reproduced from the publication by Kotliar et al. (2000). Energies are in units of the half
bandwidth.

so that the corresponding susceptibility χ = ∂D/∂U diverges as |U − U ∗|−2/3 for
T = T ∗. In the following, we will show that the IPT data and (rescaled) QMC data
presented in the cited paper fail to support this claim.

In order to simplify the discussion, we have reproduced both figures of the cited
paper as Fig. 3.59. In the main panel of Fig. 3.59a, QMC estimates for the double
occupancy D (circles) for the temperatures T = 1/40, T = 1/35, T = 1/32, and
T = 1/25 (from top to bottom) have been scaled on IPT estimates (thin lines)
for the temperatures T = 0.0469, T = 0.05, T = 0.052, and T = 0.056; here, all
energies are measured in units of the half bandwidth and have to be doubled to
correspond to the units used throughout the rest of this chapter. Thick lines show
fits derived from the Ginzburg-Landau theory. Evidently, the only candidate for
singular behavior among these data sets is that for the lowest temperature(s); a
magnified view on this data is given in Fig. 3.60. Here, the QMC results (circles) are
connected by lines to guide the eye. Note that the two QMC data points at U ≈ 2.40
have been computed for the same interaction; consequently, they imply coexistence
rather than a diverging slope of the metallic solution. For enhanced clarity, the
IPT data is shown as crosses (instead of a thin line) in Fig. 3.60. In addition to
the Ginzburg-Landau (GL) fit (solid line), we have added a pure cubic-root fit of
the form D(U) = 0.0305 + 0.035 ∗ (2.3974 − U)1/3 for the metallic phase.51 A first

51While the technique employed here for extracting the data from the postscript figures (available
from the preprint archive) is exact for relative positions of symbols and line segments, a slight
mismatch in overall scale and offset is in general unavoidable.
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Figure 3.60: Double occupancy D versus U for T . T ∗. Magnified view on top set of
curves/circles shown in the main panel of Fig. 3.59 (Kotliar et al., 2000). In addition to
the QMC data (circles) and IPT data (here: crosses) and to the Ginzburg-Landau fit (solid
line), an asymptotic cubic-root fit (dotted lines) to the Ginzburg-Landau fit for the metallic
IPT solution is shown. Interactions are in units of the half bandwidth.

important observation is that the slope of the QMC estimates for D in the metallic
phase is only slightly enhanced, but shows no signs of divergence near the transition.
For the insulating phase, an enhanced slope is only suggested by a single data point
in the coexistence region. The agreement of QMC data with the remaining data is
poor, considering that the comparison arises from a two-parameter fit. As a second
observation, we note relatively strong discrepancies between IPT data and GL fits,
even close to the transition. Furthermore, strong deviations from the asymptotic
cubic-root behavior (dotted line in inset of Fig. 3.60) of the GL fit appear already
below about U ≈ 2.35.

In contrast, square-root fits show excellent agreement with the IPT results, both
for the metallic and the insulating phase as shown in Fig. 3.61 and Fig. 3.62, respec-
tively. Although the shape of each of these fits (dashed lines) is determined by a
single parameter (in addition to the end point coordinates Dc and Uc) instead of at
least two parameters for the GL fits, the deviation of the square-root fits from the
IPT data is typically almost an order of magnitude smaller than that of the GL fits
(with cubic-root asymptotics). We conclude that the critical exponent 1/3 derived
by Kotliar et al. (2000) is either wrong even at the critical point or that the critical
behavior at the second order end point is different from the critical behavior of co-
existing solutions near their stability edge. In any case, we have established that the
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Figure 3.61: Double occupancy D versus U for T . T ∗. Magnified view on top set of
curves/circles shown in the main panel of Fig. 3.59 (Kotliar et al., 2000) for the metal. In
addition to the QMC and IPT data and to the Ginzburg-Landau fit, a cubic-root fit (dotted
lines) and a square-root fit of the form D(U) = 0.0332 + 0.0488 (2.39695 − U)1/2 (dashed
lines) to the asymptotic behavior of the metallic IPT solution is shown. Interactions are in
units of the half bandwidth.

latter is governed by an exponent of 1/2, at least within IPT.52

Given the fact that the misfit from the correct asymptotic behavior was hard to
catch even for IPT data which has no statistical error and even very close to the
critical end point, we may expect that critical behavior is practically undetectable
using QMC at temperatures that deviate by a few percent (or more) from the critical
temperature T ∗ or when using a grid size of more than fractions of a percent in
U . This is illustrated in Fig. 3.63 where the QMC data (symbols) presented by
Kotliar et al. (2000) is reanalyzed using regular fit functions (upper lines) similar to
those used in subsection 3.5.5. The bottom line shown for U ≥ 2.3 represents our
result (3.19) for the insulator (rescaled to units of the half bandwidth). The slight
systematic deviation of the QMC data in the insulating phase (for U ≥ 2.4) from this
curve probably reflects a finite ∆τ error. The overall agreement between QMC data
for the metallic phase and our fit functions is very good. For T = 1/40, below the
critical temperature, it is even much better than the agreement between QMC and
either the (rescaled) IPT result or the GL fit. Only the coexistence point belonging

52In contrast, the IPT result for the (interacting) density of states at the Fermi level shown in
Fig. 3.59b is well described by an exponent 1/3 when T is varied at constant U = U ∗

IPT, both on
the metallic and insulating side (with different prefactors).
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Figure 3.62: Double occupancy D versus U for T . T ∗. Magnified view on top set of
curves/circles shown in the main panel of Fig. 3.59 (Kotliar et al., 2000) for the insulator.
In addition to the QMC and IPT data and to the Ginzburg-Landau fit, a cubic-root fit of
the form D(U) = 0.031− 0.0195 (U − 2.3963)1/3 (dotted lines) and a square-root fit of the
form D(U) = 0.0293− 0.027 (U − 2.39675)1/2 (dashed lines) to the asymptotic behavior of
the insulating IPT solution is shown. Interactions are in units of the half bandwidth.

to the insulating phase at U ≈ 2.4 at this temperature is incompatible with all other
data or fit functions; a finer grid or an intensive convergence study would be needed
to elucidate the irregular behavior of this single data point. The fit for T = 1/32,
the highest temperature considered here, is perfect. Only for T = 1/35, just above
the critical temperature T ∗, a deviation in the transition region is clearly seen. The
numerical significance of this discrepancy is not completely clear.53 We conclude
that potential problems arising from the fit functions used throughout this chapter
are indeed limited to a very small region around the second-order end point. Since
no results are reported for this region and since no signals for singular behavior are
present, a negative impact on our results can be excluded.

Critical Slowing Down

All points in parameter space (here formed by U and T ) where a new minimum of
the free energy appears in the space of hybridization functions are critical in the

53Note that the deviation of the QMC data is of the same order of magnitude for T = 1/32 and
U = 2.3 where the only viable explanation is the numerical Monte Carlo error.
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Figure 3.63: Double occupancy D versus U for T . T ∗. QMC data for a selected set of
temperatures extracted from the main panel of Fig. 3.59 (Kotliar et al., 2000) in comparison
to fits with regular functions and to our result (3.19) for the double occupancy of the
insulator. Thick portions of the lines indicate ranges of good agreement with the QMC
data. All energies are in units of the half bandwidth.

sense that the fluctuation matrix has a zero eigenvalue.54 Consequently, at least
one component of the gradient of the free energy with respect to the hybridization
function vanishes faster than linearly at its minimum. An iteration scheme that relies
on linear behavior of the gradient thus slows down near the critical point; exactly
at the critical point, the number of iterations necessary for decreasing the error of a
solution by some factor may even diverge (in the limit of infinite target accuracy).

Therefore, difficulties in the DMFT iteration process may be expected near critical
points and lines. It is not clear a priori, however, how large the problematic regions are
and what accuracy can be reached at reasonable numerical cost. Joo and Oudovenko
(2001) found themselves unable to present QMC estimates of the coexistence region
for T > 0.035 due to critical slowing down.55 Our experiences are less dramatic. We
found slower convergence near critical points, in particular at higher temperatures
close to the temperature of the second-order end point, both for T . T ∗ and for
T & T ∗. This is illustrated in Fig. 3.64 for T = 1/15 and U = 4.55 (in units
of the variance of the DOS). Here, “traces” of the double occupancy D are shown

54In the context of the MIT, these points are the second-order end point and the stability edges
of solutions at the boundaries of the coexistence region.

55These authors even found critical slowing down for the stable solution near the boundaries of
the coexistence region. This claim is rather surprising in view of the fact that the zero eigen mode
only appears when the free energy is evaluated at the hybridization function corresponding to the
unstable solution. It is not supported by our data at all.
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Figure 3.64: Convergence of double occupancy D for T = 0.067 and U = 4.55. The
number of sweeps is about 105 for thin lines and about 106 for thick lines. Symbols at the
left axis indicate our best estimate of D for each value of ∆τ .

versus iteration number for several independent iteration runs. Line types (solid,
long-dashed, short-dashed, and dotted) denote the time discretization ∆τ while the
width of the lines give a rough indication of the numerical accuracy, i.e., the number
of sweeps used in each convergence run which is larger for thicker lines. Apparently,
the overall convergence is not good since not all solutions for the same value of ∆τ
tend to a common fixed point. Instead, long-scale fluctuations appear, e.g., for the
run with lower accuracy for ∆τ = 0.2 (thin long-dashed line). This is exactly what we
expect from Landau theory: as soon as the gradient of the free energy is smaller than
statistical fluctuations, the iterated solutions follow an asymptotically free random
walk (predominantly in the soft-mode direction). Two strategies for overcoming the
associated problems are also apparent from Fig. 3.64: On the one hand, it is important
to increase the numerical precision near critical regions in order to reduce fluctuations.
On the other hand, trends can be much better recognized when comparing several
independent self-consistency runs. By comparing the evolution (as a function of
iteration number) of different runs with more metallic or insulating initial conditions,
one can establish boundaries for the fixed point or accelerate convergence by preparing
initial states near the assumed fixed point.56 We used such strategies extensively
throughout the numerical parts of this thesis. For example, the upward trend of
initial solutions for ∆τ = 0.15 (two lower short-dashed lines in Fig. 3.64) prompted
us to initialize runs with D ≈ 0.042; those are seen to be stable.

In order to further illustrate these considerations and to demonstrate increased
fluctuations near the critical point, we perform sets of iteration runs for T = 0.055,

56The possibilities for initialization are obviously more limited very close to a stability edge.
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Figure 3.65: Convergence and fluctuations of double occupancy D for T = 0.055 and
U = 4.65, very close to the critical end point (T ∗ = 0.055, U∗ = 4.665) for ∆τ = 0.0.
Thin lines correspond to runs with 105 sweeps per iteration, thick lines to runs with 4 · 106

sweeps.

U = 4.65, i.e., very close to our estimate of the critical end point (for ∆τ = 0.0).
Figure 3.65 shows results for the discretizations ∆τ = 0.25, ∆τ = 0.20, and ∆τ =
0.15, with three statistically independent runs using 105 sweeps (“low” accuracy)
and three runs using 4 · 106 sweeps per iteration (“high” accuracy) each. Evidently,
the amplitude of fluctuations indeed increases for decreasing ∆τ at T = 0.055 and
U = 4.65. The fluctuations are strongly reduced by a 40-fold increase in the number
of sweeps, i.e., by a reduction of the statistical error of the solution of each impurity
model to about 1/6. Note that the long “time” scale (i.e., the large number of
iterations) associated with the fluctuations of the runs with low accuracy generically
leads to an underestimation of error bars for averages obtained from a single run.
One way of detecting such extremely long autocorrelation time is the comparison of
several independent runs as seen in Fig. 3.65 for ∆τ = 0.15. For a finite number of
runs, however, the deviations of all iteration runs may have the same sign as seen for
∆τ = 0.20 in the same figure. Thus, accurate and controlled estimates can only be
obtained from runs with high accuracy, i.e., a large number of sweeps.

Corresponding data for the slightly higher temperature T = 1/15 is shown in
Fig. 3.66. For each of the combinations of a representative sets of values of the
interaction (U = 4.4, U = 4.55, U = 4.65, and U = 4.8) and of the discretization (here
limited to ∆τ = 0.25, ∆τ = 0.2, and ∆τ = 0.15 by the computational resources), we
used our best previous estimate of the converged solution for initializing 3 runs with
high accuracy and 3 runs with low accuracy. While some initial trend is visible even
in some high accuracy runs, the rapid convergence of each run and the agreement
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Figure 3.66: Fluctuations in the double occupancy for T = 0.067 and a) U=4.4, b)
U=4.55, c) U=4.65, and d) U=4.8 using a discretization of ∆τ = 0.25 (solid lines), ∆τ =
0.2 (long-dashed lines), and ∆τ = 0.15 (short-dashed lines). Thin lines correspond to runs
with 105 sweeps per iteration, thick lines to runs with 4 · 106 sweeps. Crosses at the left
axis represent final estimates for D at finite ∆τ .

between the runs support the high accuracy of our final estimates.57 The good
convergence of the final solutions (i.e., an average of the converged parts of the high-
accuracy runs) is further supported independently by the regular dependence of E
on U (for each value of ∆τ) already seen in Fig. 3.23.

At lower temperatures, the fluctuations decay fast enough that runs with an order
of 105 sweeps suffice for reliable results. We conclude that critical slowing down poses
a challenge which can be overcome by the techniques described here and by investing

57Note the vastly different scales for D in the different parts of Fig. 3.66.
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enough computer time.

3.8 Spectra

The objective of this section is the computation of spectra, i.e., of interacting local
spectral functions A(ω) = − 1

π
ImG(ω) on the real axis. Since the QMC simulations

yield results on the imaginary axis, this requires the use of the maximum entropy
method (MEM). In subsection 3.8.1, we discuss advanced aspects of the maximum
entropy formalism in the context of spectral functions. A specification of the al-
gorithmic choices made in this work and numerical tests follow in subsection 3.8.2.
Finally, numerical results are presented for the half-filled Hubbard model with Bethe
DOS at T = 1/20 and T = 1/15 in subsection 3.8.3.

3.8.1 Maximum Entropy Method for Spectral Functions

Both the basic ideas of the MEM and a simple algorithm have already been intro-
duced in Sec. 1.4. We will in this subsection discuss three potential problems in the
application of the MEM for obtaining spectral functions from imaginary-time QMC
data: covariance, non-Gaussian distribution of statistical errors, and systematic er-
rors.

Covariance

If a series of measurements is made for a vector of observables and the variance of each
component is finite,58 the probability distribution of the average vector approaches a
multivariate Gaussian distribution in the limit of an infinite number of measurements.
This distribution is fully characterized by its covariance matrix the estimate of which
reads in the case of the imaginary-time Green function

Ckl =

Nd∑

i=1

(
Ḡi
k − Ḡk

) (
Ḡi
l − Ḡl

)

Nd(Nd − 1)
. (3.66)

As in (1.61), lower indices l here correspond to time slices τl = l∆τ . The l component
of the result of the ith measurement (total number: Nd) is denoted by Ḡi

l; Ḡl is
the corresponding average. In the uncorrelated case, the matrix Ckl reduces to its
diagonal with elements σ2

kδkl. This is, in fact, the simplifying assumption made in
Sec. 1.4 and used in a program implemented by Sandvik (Sandvik and Scalapino,
1995) which is used in parts of this work. It is the main point of this paragraph
to demonstrate that this assumption does not apply in the cases of interest. The
covariance matrix for a symmetric case (Bethe DOS with half filling at T = 1/20
and U = 4.6) is shown in Fig. 3.67a. Here, crosses indicate matrix elements Ckl
for 0 ≤ k ≤ l ≤ Λ/2; lines connect elements with the same value of k. Diagonal

58The condition of finite variance is trivially met for measurements of the imaginary-time Green
function since it is bounded: 0 ≤ G(τ) ≤ 1.
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Figure 3.67: a) Covariance matrix Ckl of the QMC estimate of G(τ) for Bethe DOS,
T = 1/20, U = 4.6, and ∆τ = 0.1 (i.e., Λ = 200) using 300 bins with 10000 sweeps each.
Circles indicate diagonal elements Cll as a function of j; offdiagonal elements with the same
value of k (crosses) are connected by a solid line. The indices extend over 0 ≤ k ≤ l ≤ Λ/2
(and correspond to τk = k∆τ , τl = l∆τ); the missing elements follow from the symmetries
Ckl = Clk and (here) G(τ) = G(β − τ). b) Corresponding Pearson’s coefficients rkl. For
enhanced clarity, only even indices are included in the plots.

elements are additionally denoted by circles. Evidently, the offdiagonal elements are
generically of the same order of magnitude as the diagonal elements. This shows that
QMC measurements of the imaginary-time Green function G at different time slices
τl are not independent, but are instead highly correlated; in Bryan’s terminology the
full data set is oversampled. The same data is shown in a different representation in
Fig. 3.67b; here, each column and each row has been divided by the square root of the
corresponding diagonal element. The result is a matrix of Pearson’s coefficients rkl,
a dimensionless measure of linear correlation between pairs of stochastic variables.

Corresponding plots of the covariance matrix for an asymmetric case (LDA DOS
of La1-xSrxTiO3 , n = 0.94, T = 1/10, and U = 5.0) are shown in Fig. 3.68. Since
all three bands are degenerate and since measurements of G for each band are highly
correlated (e.g., the occupancy of individual bands fluctuates while the total occu-
pancy is almost exactly constant), the most relevant covariance matrix for this case
is that shown in Fig. 3.68a for the band-averaged case; Fig. 3.68b which applies to
measurements of G for one individual band (with much larger variances for τ → 0
and τ → β) is included for comparison and for later discussion in chapter 5 (in sub-
section 5.4.2). All results clearly demonstrate the large degree of covariance present
in QMC estimates of G(τ).

Thus, a more general formulation of the MEM should be used which takes into
account all elements of the covariance matrix. In principle, this is simple since the
form (1.65) of the probability function still applies (in the limit of large bin size)
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Figure 3.68: Covariance matrix Ckl of the 3-band QMC estimate of G(τ) for (asymmetric)
LDA DOS of La1-xSrxTiO3 , n = 0.94, T = 1/10, U = 5.0, and ∆τ = 0.167 (i.e., Λ = 60)
using 102 measurements with 100000 sweeps each. The indices extend over 0 ≤ k ≤
l ≤ Λ − 1; the missing elements follow from the symmetry Ckl = Clk and the constraint
G(0)+G(β) = 1. a) Covariance matrix computed from band-averaged QMC measurements
of G. b) Covariance matrix computed from QMC measurements of G for individual bands.

when χ2 is generalized as

χ2 =
Λ∑

k,l=1

(
Ḡk −Gk

)
[C−1]kl

(
Ḡl −Gl

)
. (3.67)

In practice, it is necessary to apply a singular value decomposition (SVD) for di-
agonalizing the matrix C for repeated use in the computation and to work with
rotated data Ḡ′

l and σ′
l. A SVD of the kernel K can also greatly accelerate the search

for a solution. Another improvement realized in advanced codes is the possibility of
marginalizing the spectrum over the Lagrange parameter α (“Bryan’s method”). Jar-
rell’s (1997) program [primarily based on Bryan (1990) and Gubernatis et al. (1991)]
also used in this work realizes all of the improvements mentioned in this paragraph
and also allows for a nonuniform frequency grid. While it yields more reliable spec-
tra than the Sandvik code and even computes error bars for the integrated spectral
weight in some finite regions, it requires more data sets and some additional efforts
in order to produce stable results.

Non-Gaussian Error Distribution

One problem which arises both for the Sandvik and the Jarrell code is that the as-
sumption of a Gaussian distribution of errors breaks down for G(τ) with τ ≈ β/2
in gapped systems at low temperatures T . This is illustrated by the histogram of
measurements of G(β/2) for the Bethe DOS, T = 1/20, and U = 5.0 shown in
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Figure 3.69: Histograms of Ḡ(β/2) for a Bethe DOS, T = 1/20, and ∆τ = 0.1 based
on 300 measurements for each value of U (boxes). Smooth lines indicate Gaussian fits
reproducing both the averages and the variances of each of the measured distributions.
For U = 5.0, the variance is dominated by a small fraction of outliers; 97 percent of all
measurements are below 0.003 (inset).

Fig. 3.69. Evidently, the distribution indicated by the histogram (boxes with solid
lines) strongly differs from a Gaussian distribution corresponding to the same error
and variance. In particular, the true distribution is strongly asymmetric while the
Gaussian fit extends into the forbidden region G(β/2) < 0. In fact, the variance is
primarily associated with a small fraction of outliers [i.e., measurements correspond-
ing to very large values of G(β/2)]; eliminating the top 3% of outliers results in a
much narrower (but still asymmetric) distribution as seen in the inset of Fig. 3.69.
In comparison, the histograms for the insulating phase at U = 4.7 (dashed lines)
and for the strongly correlated metallic phase at U = 4.6 (dotted lines) are much
better approximated by Gaussians. As a consequence, the application of the MEM
formalism deep inside the insulating phase implies the use of an inappropriate like-
lihood function59 unless the number and accuracy of measurements is increased (by
some orders of magnitude) so that Gaussian statistics is restored for the averages.60

MEM algorithms have been formulated, however, for non-Gaussian error statistics in
other contexts (Bryan and Skilling, 1980); we are therefore confident that a practical
solution could be found leading to even more reliable spectra for insulators.61

59Our attempt of solving this problem by transforming G (to a new unbounded variable) lead
to severe numerical instabilities so that the corresponding method could not be used in practical
applications.

60At this point, the statistical error may be lower than systematic errors so that potentially the
full error is never well approximated by a Gaussian distribution.

61Note that the presence of far outliers as seen for U = 5.0 in Fig. 3.69 poses an even more
severe problem than skew and kurtosis since the characterization of the corresponding probability
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Systematic Errors

It is important to realize that MEM can only yield reliable results when systematic
errors are much smaller than statistical errors. For DMFT calculations, systematic
errors can be caused by incomplete convergence of the self-consistency cycle and
by a finite value of ∆τ . An accurate solution of the impurity problem and a large
number of iterations (possibly using underrelaxation) can control the iteration error or
effectively convert it to a statistical error by using completely independent simulation
runs. A similar effect is achieved at lesser cost by performing some additional DMFT
iterations at very high precision after convergence; measurements of G(τ) for each
of the resulting impurity models can then be combined for analytic continuation.
The spectra to be presented in this section will be based on 50 measurements for
6 impurity models (i.e., a total of 300 bins) for each parameter set; this approach
brings the iteration error well under control.

In comparison, remaining ∆τ errors in {Ḡl} are potentially more severe. Since
this problem cannot be overcome by extrapolation on the level of spectra, reliable
spectra require good algorithms (i.e., programs with minimal ∆τ error) using small
enough values of ∆τ . This is more important in the context of DMFT calculations
than for the solution of plain SIAMs since for the DMFT even the self-consistency
condition itself (which includes discretized Fourier transformations) introduces an
error at finite values of ∆τ (cf. subsection 3.4.1). For illustration of this point, a
comparison of imaginary-time Green functions for the Bethe DOS in the insulating
phase (T = 1/20 and U = 5.0) is shown in Fig. 3.70. In order to resolve the
important region of τ ≈ β/2, we here use a strongly magnified scale (for a more
complete picture, see Fig. 3.75). The thick short-dashed line represents our best
estimate (for ∆τ = 0.1) of G(τ). The thinner dotted line is obtained by transforming
back the MEM spectrum to be presented later in Fig. 3.80. The agreement between
both curves is excellent for τ . 6. Since the slight fluctuations visible in the QMC
results for 6 . τ ≤ 10 (with a local minimum for τ ≈ 7) violate analyticity,62 they are
filtered out by the MEM procedure which corresponds to a regularized form of G(τ)
(dotted line). Both curves agree reasonably well with Jarrell’s result [for ∆τ = 0.167
as used in Schlipf et al.’s (1999) paper: long-dashed line]. In contrast, Ulmke’s
original smoothing trick discussed in subsection 3.4.1 leads to much larger G(τ) and
fails to capture the insulating character of the solution: while the former results are
roughly consistent with a gap of 0.5 (here modeled using rigid semi-elliptic Hubbard
bands), the Ulmke-code solution implies quite significant spectral weight near ω = 0
(which even exceeds that associated with touching rigid Hubbard bands).

We conclude that the most important prerequisite for computing reliable spectra

distribution is an ill-conditioned problem. We cannot exclude the possibility that the outliers are
artifacts of the QMC method, i.e., arise from the finite number of warm-up sweeps used for each
measurement. Up to outliers, all data sets presented in Fig. 3.69 lead to nearly Gaussian histograms
of logG(β/2).

62The positivity of all even derivatives of G(τ) can be read off from (1.55); conversely, local
extrema for 0 ≤ τ ≤ β/2 imply negative regions of the spectrum A(ω) which is clearly unphysical.
A second, weaker form of the violation of analyticity may be detected when the computation of the
self energy is attempted (see Sec. 4.6).
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Figure 3.70: QMC estimates of G(τ) for Bethe DOS, T = 1/20, and U = 5.0 (thick
lines) in comparison with the form of G(τ) corresponding to the MEM spectrum shown in
Fig. 3.80 (dotted line) and with G(τ) corresponding to the spectra shown in the inset (thin
dashed lines). Results of this work (for ∆τ = 0.1) essentially agree with results obtained by
Jarrell (for ∆τ = 0.167); deviations of results obtained using Ulmke’s smoothing trick (for
∆τ = 0.1) are almost two orders of magnitude larger. While the former are consistent with
a spectral gap of about 0.5, the result of Ulmke’s QMC method implies a gapless spectrum.

is accurate QMC data obtained using a state-of-the-art QMC algorithm. A full
application of the advanced aspects of MEM can only lead to improved results once
systematic errors are under control, i.e., are significantly smaller than statistical
errors. As we will see in the following, this condition is not always met in this work
due to the high precision of the data, i.e., the small statistical errors. By taking the
systematic errors into account, we will nevertheless be able to compute quite accurate
spectra.

3.8.2 Algorithmic Choices and Numerical Tests

In this subsection, we compare various approaches and perform numerical tests in
order to establish a robust and accurate method for the analytic continuation of
imaginary-time data obtained using the particular QMC code improved and used as
part of this thesis.

Default Models

One decision that has to be made within all variants of the MEM is the choice of
a default model. The simplest possibility is a constant default model m(ω) ≡ m0

(solid line in Fig. 3.71). Its only parameter is the extent of the frequency grid which
should be chosen large enough that it is numerically irrelevant. Then, the usage of
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Figure 3.71: Default models used within this section: flat model m(ω) = 1/(2 ∗ωc) (solid
line) and narrow modelm(ω) =

(
exp[−(0.22437ω)8]+0.001

)
/8.4246 (dotted line) as used in

connection with Sandvik’s algorithm (both for a cutoff frequency ωc = 15) and wide model
m(ω) = exp[−(w/6)2]/(6

√
π) and narrow model m(ω) = 0.128281 exp[−(ω/4.3002)4] as

used in connection with Jarrell’s code (dashed lines). The inset shows the corresponding
integrated spectral weights

∫ ω
−ωdω′m(ω′).

a constant default model should guarantee results with minimal bias. On the other
hand, QMC data cannot provide sufficient information at large frequencies according
to the Nyquist theorem. While the entropic ansatz prevents the MEM from producing
artificial structures in this range, it often predicts too much weight at large (absolute)
frequencies. This tendency can be reduced by choosing a default model which decays
towards the edges of the frequency grid. Ideally, such a model should only incorporate
exactly known analytic properties and should not introduce artificial features. In the
case of a single-band model with sharp band edges the following observation is useful
in this respect: if the total extent of the DOS is W > 0, the total extent of the
interacting spectrum is bounded by |U |+W . This implies for the present symmetric
case and U > 0:

A(ω) = 0 for |ω| > U +W

2
. (3.68)

Since most spectra will be computed for U ≤ 5 and since W = 4 for the Bethe
DOS, a good default model should essentially cut off the spectrum at U ≈ 4.5.
This is achieved by the narrow model shown as a dotted line in Fig. 3.71 which
is essentially proportional to exp(−ω8); a small offset is necessary for numerical
stability.63 Additional default models used in connection with Jarrell’s MEM code

63As a constant default model was initially hard-coded in Sandvik’s code (as previously used
within our group), the usage of nonconstant default model required a slightly generalized version of
the program. In our version, important parameters of the default model can be chosen at runtime.
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are shown as dashed lines in Fig. 3.71 and are specified in its caption.
It is clearly possible to devise default models which represent more accurately

expectations about the true spectrum for the given parameter set, i.e., have features
like upper and lower Hubbard bands, a quasiparticle peak or a gap at the Fermi
energy etc. Such a default model can be obtained, e.g., as a result of approximate
theories, by fitting moments, or by using the MEM result of a related parameter set.
In particular, Jarrell (1997) describes an annealing method which works at a hierarchy
of temperatures: here, an analytic continuation of QMC data is first performed at
high temperatures where a default model obtained from perturbation theory is still
quite accurate. The MEM result obtained at each temperature step is then used as a
default model at the next lower temperature. While such a procedure can be justified
from the observation that spectra usually depend smoothly on temperature and show
more structure at lower temperatures, it has no Bayesian foundation and may break
down near phase transitions. In our view, the use of the annealing method should
be limited to cases where the MEM procedure cannot be stabilized by other means,
possibly due to lack of sufficient computing resources. As we will see in the following,
such a need does not arise within the context of this thesis.

We also will not need to apply generalizations of the MEM for enforcing analytic
constraints (i.e., for moments of the spectrum) by adding further terms to the loga-
rithm of the prior probability defined in (1.63) (i.e., in connection with a Lagrange
multiplier). While such a procedure does not pose the danger of introducing artifacts,
each enforced constraint removes one possible check of the accuracy of the result. For
this reason and for the sake of simplicity, we prefer a plain implementation of the
MEM (at least for comparison) in connection with sufficiently accurate data.64 Note
that the full band width can also be constrained by an appropriate choice of the
default model.

Error Analysis

A first point that we would like to stress is the importance of performing the error
analysis in the paramagnetic phase of interest for the spin-averaged data G(τ) =
(G↑(τ) +G↓(τ))/2. By taking this average, the majority of statistical errors is elim-
inated since in each QMC solution of the impurity problem the estimates of G↑(τ)
and G↓(τ) are highly correlated. Due to the correlations, the alternative procedure
of treating both estimates as independent measurements (as previously used in our
group) leads to incorrect error statistics; in fact, it grossly overestimates errors for
small ∆τ (or small β−∆τ) which are here small due to the symmetry of the half-filled
model. This is shown in the inset of Fig. 3.72 for T = 1/20 and U = 4.6. Here, the
lower black solid line represents the true measured statistical error. Treating both

In Jarrell’s code, the default model (and even the grid) is completely arbitrary, since it is read from
a specified file in tabulated form.

64In early stages of this work, we found violations of analytic behavior in MEM results when
trying to compute the real-frequency self-energy in antiferromagnetic phases. Here, the numerical
MEM procedure can probably only be stabilized when some constraints are enforced. The following
necessary conditions for analyticity valid for a Bethe lattice (W = 4) may be useful for future work:
ImGα(ω) ImGᾱ(ω) ≤ 1 and ImGα(ω)/ImGᾱ(ω) ≥ ReG2

α(ω). Here, α denotes the sublattice index.
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Figure 3.72: Local spectral function A(ω) for T = 1/20 and U = 4.6: MEM results
obtained using the Sandvik scheme based on statistical errors of spin-averaged QMC mea-
surements (thick lines) or wrongly exaggerated errors (thin lines). Solid and dotted lines
correspond to a flat default model; dashed lines correspond to a narrow default model
(cf. Fig. 3.71). Inset: errors estimated from spin-averaged measurements (lower lines) and
exaggerated error (dotted line).

spin species as independent implies the error estimate shown as a dotted line which
increases rapidly for τ → 0 (and extends to about 0.004 at τ = 0). The zig-zag curve
also shown in the inset of Fig. 3.72 takes additional systematic errors into account
as we will discuss below. The overestimation of errors at small τ implies that this
region is essentially disregarded in the MEM continuation which suppresses the most
important information: on the one hand, higher-order moments of the spectrum are
directly associated with derivatives G(n)(τ)|τ=0 via (1.59); on the other hand, the
assumption of Gaussian error distribution is very accurate in this region.65 These
considerations are clearly supported by the MEM results obtained using the Sandvik
algorithm shown in the main part of Fig. 3.72. Here, the solid and long-dashed lines
correspond to calculations based on the adjusted error (red solid line in the inset) for
the flat and the narrow default model detailed in Fig. 3.71, respectively. The excel-
lent agreement between both results supports the good quality of the QMC data; the

65In fact, Jarrell recently suggested that QMC estimates of G(τ) should be disregarded in the
problematic region of τ ≈ β/2 in gapped phases in order to avoid negative impact of non-Gaussian
error statistics on the MEM results. In the symmetric case at hand, this suggestion would amount
to using only QMC data at small τ (which is essentially disregarded in the scheme conventionally
employed in our group).
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validity of both results is also supported by the fact that only little spectral weight
is predicted in the region |ω| > 4.3 forbidden by (3.68). An additional result for
the narrow default model that takes into account the possibility of larger systematic
errors (short-dashed line) yields a somewhat more semi-elliptic shape of the Hubbard
bands, but is overall consistent with the results discussed so far. In contrast, MEM
results based on the exaggerated error derived from unsymmetrized measurements
(thinner curves) differ clearly: both the much stronger model dependence and the
large weight at high frequencies indicate the poor quality of these results.

As we have pointed out in the beginning of this section, Jarrell’s program rep-
resents a careful implementation of the Bayesian MEM approach and is in general
superior over simplified algorithms as implemented in the code originating from Sand-
vik. Consequently, it would appear natural to only use the more advanced code for
this thesis. However, numerical instabilities were encountered in a direct application
of this method to our best QMC data (for ∆τ = 0.1, i.e., Λ = 200 time slices), in par-
ticular for very accurate data sets with small statistical errors. While some progress
could be made when the impact of the systematic iteration error was reduced by com-
bining measurements performed for different impurity models (cf. subsection 3.8.1),
consistent results could only be obtained by skipping time slices as illustrated in
Fig. 3.73. Here, best results (thick solid and dotted lines) were obtained by using
only every 4th time slice (i.e., τ0 = 0, τ4 = 0.4 etc.) as can be seen from the rel-
atively small dependence on the default model and from the comparison with the
“Sandvik” result (double-dashed line) reproduced from Fig. 3.72. Skipping only ev-
ery second time slice results in spectra (dashed lines) with additional features or too
much weight at large frequencies; for a wide default model, even the analytic con-
straint A(ω = 0) < 1/π is violated. When using the full QMC data as input, the
MEM scheme did not even converge.66 A welcome side effect of skipping time slices
is that the overall impact of covariance is reduced which stabilizes the SVD.

The primary reason for these problems becomes apparent in the main panel of
Fig. 3.74. Here, the imaginary-time Green function corresponding to the MEM spec-
trum obtained from Sandvik’s method for a narrow default model (cf. Fig. 3.72) has
been subtracted from the measured QMC data. On the resulting magnified scale, an
oscillatory behavior with deviations from a smooth curve which alternate on neigh-
boring time slices becomes clearly visible. Since no such short-time oscillations appear
in corresponding differences of Green functions associated [via (1.55)] with different
MEM spectra (not shown), the phenomenon is recognized as a systematic error of
the QMC data. Most likely, this error is associated with remaining deficiencies of
the Fourier transformation scheme employed in this work and could be removed by
employing a more sophisticated scheme as presented in App. C. While the individ-
ual errors are roughly in line with estimated error bars (of about 10−4) for each time
slice, the pattern is so strong (in particular for small τ) that the associated unphysical
degree of freedom can cause a failure of the full MEM procedure (in Jarrell’s code).
On the other hand, the short-time oscillations are removed when only every second
or every fourth time slice is included in the analysis which explains why the stability

66In tests for other parameter sets where numerical convergence could be obtained, additional
separated peaks and/or a central dip in the quasiparticle peak appeared in the spectra.
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Figure 3.73: Local spectral function A(ω) for T = 1/20 and U = 4.6: MEM results
obtained using Jarrell’s program in connection with a wide or a narrow default model (cf.
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4th (thick lines) or every 2nd time slice (thin dashed lines) is used for the analysis, the rest
is skipped. A result of Sandvik’s method (double-dashed line; cf. Fig. 3.72) is included for
comparison.

of the MEM procedure is then reestablished. The longer-range oscillations visible in
the difference shown in the main panel of Fig. 3.74 is also unphysical; this is seen
from the presence of local maxima and minima of the (smoothed) second derivative
d2Ḡ(τ)/dτ 2 shown in the inset of the same figure.

Since Sandvik’s MEM scheme treats the time slices as being independent, it is not
directly susceptible to the short-range oscillation. Still, the associated underestima-
tion of errors at small τ (where the statistical errors are very small in the symmetric
case) may negatively impact the results. For this reason, the computed statistical
error is adjusted throughout this section by adding 2 · 10−5 to ∆Ḡl for all odd time
slices l; the resulting zig-zag shape of the error estimate was already shown as a
red line in the inset of Fig. 3.72. Using a larger error increment for the time slices
with odd index (putting also a lower bound on the relative error estimate) (short-
dashed line in the same figure) only leads to minor modification of the spectrum
which demonstrates the robustness of our approach.
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Figure 3.74: Difference between imaginary-time Green function Ḡ(τ) estimated by QMC
and G(τ) corresponding to the MEM spectrum obtained using Sandvik’s scheme and a nar-
row default model (solid line in Fig. 3.72). Inset: second derivative d2Ḡ(τ)/dτ2, smoothed
with Gaussian of width 0.3.

3.8.3 Numerical Results for the Bethe DOS

In this subsection, we present numerical results for the local spectral function of the
half-filled Hubbard model with semi-elliptic DOS at moderately low temperatures
(T = 0.05 and T = 0.067). These results are based on the MEM procedure discussed
above (using Sandvik’s scheme with properly adjusted errors) and on the QMC es-
timates of the imaginary-time Green function shown in Fig. 3.75 for T = 0.05 and
in Fig. 3.76 for T = 0.067. Using the symmetry G(β − τ) = G(τ), both figures are
split for easier comparison of metallic solutions (left panel, only shown for τ ≤ β/2)
and insulating solutions (right panel, only shown for τ ≥ β/2). Furthermore, the
noninteracting Green function (U = 0.0) is included for reference.

The spectra for the metallic phase at T = 0.05, i.e., slightly below the critical
temperature T ∗ ≈ 0.055, are shown in Fig. 3.77 and Fig. 3.78 as obtained from MEM
using a flat and a narrow default model, respectively. The corresponding results for
the insulating phase are depicted in Fig. 3.79 and Fig. 3.80. Evidently, the dependence
of the spectra on the default model is negligible for all interactions U presented in
the graphs. In the metallic phase, the spectral density at the Fermi level (ω = 0)
is approximately pinned at the noninteracting value ρ(0) = 1/π ≈ 0.32 for U . 4.4.
Since Luttinger’s theorem is exact only at T = 0, the slight deviation in this Fermi
liquid regime can be attributed to the finite temperature. The larger deviation for
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Figure 3.77: Local spectral function of the half-filled Hubbard model with semi-elliptic
DOS for d → ∞ in the paramagnetic metallic phase at T = 0.05: QMC/MEM result for
∆τ = 0.1 using a flat default model. Inset: integrated spectral weights.
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Figure 3.78: Local spectral function of the half-filled Hubbard model with semi-elliptic
DOS for d → ∞ in the paramagnetic metallic phase at T = 0.05: QMC/MEM result for
∆τ = 0.1 using a narrow default model. Inset: integrated spectral weights.
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Figure 3.79: Local spectral function of the half-filled Hubbard model with semi-elliptic
DOS for d→∞ in the paramagnetic insulating phase at T = 0.05: QMC/MEM result for
∆τ = 0.1 using a flat default model. Inset: integrated spectral weights.
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Figure 3.80: Local spectral function of the half-filled Hubbard model with semi-elliptic
DOS for d→∞ in the paramagnetic insulating phase at T = 0.05: QMC/MEM result for
∆τ = 0.1 using a narrow default model. Inset: integrated spectral weights.
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U = 4.6 may be exaggerated due to the finite frequency grid ∆ω = 0.1 (which is here
already of the same order of magnitude as the width of the quasiparticle peak). The
clearly reduced peak hight at U = 4.7, however, marks the destruction of the Fermi
liquid. For this value of the interaction, an additional shoulder or peak appears in
each Hubbard band. As seen from the integrated spectral weights shown in the insets
of Fig. 3.77 and Fig. 3.78, the main difference between the spectra for U = 4.6 and
U = 4.7 is a shift of spectral weight of about 0.05 from |ω| . 0.5 to |ω| & 0.5.

The spectra corresponding to the insulating phase at U = 4.7 shown in Fig. 3.79
and Fig. 3.80 do not follow the expected form. In fact, the remnant of a quasiparticle
peak points to a more metallic character. Since U = 4.7 is right at the edge of
the stability region for T = 0.05 and ∆τ = 0.1 as previously seen in Fig. 3.24, this
fact may be due to numerical errors (although the corresponding QMC solution has
been found to be stable for some 20 iterations). Such ambiguities are absent for
U ≥ 4.8: a pseudogap with very low residual spectral weight appears for U = 4.8.
Within the numerical accuracy, the spectrum for U = 5.0 is already gapped with a
gap size of about 0.5 which is in line with the estimate obtained in Fig. 3.70. The
gap size increases to about 1.2 for U = 5.5. A shoulder or two-peak structure of
the Hubbard band is seen in all results for the highly correlated metallic phase and
for the insulating phase which supports the genuineness of this feature. It does not
become more pronounced with increasing interaction (in the insulating phase), but
is slightly reduced from U = 5.0 to U = 5.5. Such a behavior is expected since rigid
semi-elliptic Hubbard bands (of widths W and centered around ω = ±U/2) have to
be recovered for U →∞ (Gebhard, 1997).

Results for T = 0.067, i.e., above the critical temperature, are shown in Fig. 3.81
for the more metallic phase and in Fig. 3.82 for the more insulating phase. We cau-
tion the reader that these results have not been checked as carefully as the preceding
results (for T = 0.05). We still expect the following observations to be genuine. It
is seen in Fig. 3.81 that the height of the quasiparticle peak decreases significantly
with increasing U already for 4.0 . U . 4.5. Thus, the Fermi liquid phase breaks
down before the crossover towards the insulator (defined in terms of the energy de-
pendence; cf. Fig. 3.23) takes place at U ≈ 4.62. Again, the appearance of a second
peak in the Hubbard band is associated with the disappearance of the quasiparticle
peak, here for U = 4.6. On the insulating side, the gap opens very slowly; significant
spectral weight is still present at |ω| ≈ 0 for U = 4.7 and U = 4.8. Deep inside the
insulating phase at U = 5.0 and U = 5.5, however, the spectra are quite similar to
the spectra computed for T = 0.05 with gap sizes of about 0.5 and 1.2, respectively.
The temperature independence of the spectra in the insulating phase is in line with
the corresponding observation of such independence made for the energy and the
double occupancy in subsection 3.5.2.

Finally, let us compare the spectra computed within this thesis with previously
published work. Fig. 3.83a reproduces spectra for T = 0.05 computed by Jarrell
and included in our joint publication (Schlipf et al., 1999). Considering the slight
difference in the imaginary-time discretization used by Jarrell (∆τ = 0.167 versus
∆τ = 0.1 for our results), the overall agreement is reasonable. The better agreement
with Luttinger’s theorem for U = 4.0 may be due to the finer frequency grid used by
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Figure 3.81: Local spectral function of the half-filled Hubbard model with semi-elliptic
DOS for d → ∞ in the paramagnetic metallic phase at T = 0.067: QMC/MEM result for
∆τ = 0.1 using a flat default model. Inset: integrated spectral weights.

Jarrell near ω ≈ 0. However, significant weight is predicted in the “forbidden” region
|ω| > (U +W )/2 = 2+U/2 for all interactions U . Furthermore, we regard the height
of the peaks seen for U = 5.2 at |ω| ≈ 1 and the degree of their separation from the
main peaks at |ω| ≈ 3 as artifacts. We attribute the higher reliability of our results
primarily to a much larger investment in computer time.

NRG spectra for the significantly lower temperature T = 0.041 are reproduced
in Fig. 3.83b (Bulla et al., 2001). According to this method, the quasiparticle peak
disappears quite abruptly at the MIT. Note, however, the significant deviations from
Luttinger pinning (at 4 ρ(0) = 1.27) close to the MIT even at this lower temperature.
A slight tendency towards formation of a shoulder is seen for U/W = 1.22; due to the
increasingly bad resolution of the NRG at large frequency, however, this feature is not
significant. The extended high-frequency tails are clearly artifacts of the logarithmic
discretization (which requires corresponding broadening of all results).

The main results of this section are the construction and test of a robust scheme
for computing MEM spectra of the d = ∞ Hubbard model and the spectra ob-
tained for T = 0.05 shown in Figs. 3.77–3.80. The reliability of these results has been
successfully tested for internal consistency, consistency with analytic bounds and con-
sistency with previously published results. The spectra will pass further consistency
checks when the self-energy is computed on the real axis in Sec. 4.6. An adapted
MEM scheme will be applied to a 3-band model for La1-xSrxTiO3 in Sec. 5.4.
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Figure 3.82: Local spectral function of the half-filled Hubbard model with semi-elliptic
DOS for d → ∞ in the paramagnetic insulating phase at T = 0.067: QMC/MEM result
for ∆τ = 0.1 using a flat default model. Inset: integrated spectral weights.
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Figure 3.83: Local spectral function of the half-filled Hubbard model with semi-elliptic
DOS for d → ∞ in the paramagnetic phase: a) QMC/MEM results for T = 0.05 (and
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3.9 Conclusion

In this chapter, we have studied the fully frustrated half-filled Hubbard model with
a semi-elliptic noninteracting density of states in the limit of infinite dimensionality
near the Mott metal-insulator transition (MIT).

We have computed the coexistence region of metallic and insulating phases with
significantly higher accuracy than achieved previously in the literature. In the course
of this study, we have discussed the signatures of a first-order transition within the
DMFT and for the first time established a rigorous relation between the stability of
fixed points in a DMFT iteration scheme and the thermodynamic (meta-) stability of
phases. Using an improved method for the quantum Monte Carlo (QMC) calculation
of the kinetic energy, we have presented the first accurate estimates of the full energy
(per electron) and have shown that this observable is far better suited for the QMC
determination of phase boundaries than other observables considered so far. We have
explained the initial contradiction between QMC results regarding the possible extent
of the coexistence region by identifying strengths and weaknesses of the QMC codes
and strategies used by the major groups in the field. In particular, we have found
and corrected a major flaw in the QMC code used previously by our group; while
the original code was already correct in the limit of vanishing discretization ∆τ → 0,
it had introduced an unnecessary error at small frequencies which suppressed the
coexisting insulating phase at attainable values of ∆τ . We have also parallelized the
QMC code in order to efficiently use all available computing resources.

While the coexistence of metallic and insulating solutions indicates the presence
of a first-order transition, the phase diagram is only complete with the determina-
tion of the thermodynamic first-order transition line Uc(T ). This task was previously
regarded as too difficult for numerically exact methods that cannot directly compute
the free energy of the impurity model (such as QMC and NRG); even the predic-
tion of the iterative perturbation theory was initially unclear. We have derived a
first-order differential equation for the phase boundary; its solution is more stable
than a more direct comparison of free energies due to the cancellation of errors. On
the basis of highly accurate measurements for the energy and the double occupancy,
we have established that the differential equation may be linearized without loss of
accuracy. We have derived the leading low-temperature asymptotics of Uc(T ) from
Fermi liquid theory and have fixed a numerical coefficient by calculating the ground
state properties of the metallic phase. This was possible by performing an interpo-
lating fit of new (zero-temperature) second-order perturbation theory estimates with
results for Uc(T = 0) previously obtained by ground state methods. The quality of
this fit has been stabilized by demanding thermodynamic consistency and has been
successfully tested by comparison with extrapolated QMC data. As a byproduct, we
have calculated the coefficient γ(U) of the low-temperature specific heat and checked
the consistency with extrapolated estimates for the quasiparticle weight Z. Due to
the high precision of the QMC data and the numerous independent checks, the accu-
racy of the resulting first controlled estimate of the thermodynamic first-order phase
transition line is well established.

We have analyzed Tong et al.’s (2001) recently published independent estimates
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for the first-order phase transition line based on a scheme using a modified set of self-
consistency equations. While the agreement on the level of Uc(T ) is impressive, we
have found significant discrepancies with respect to the measured double occupancies
which this group had used in a Maxwell construction for Uc(T ). In addition, we
have demonstrated the approximate character of this scheme. We have also studied
signatures of critical behavior and have found that its impact on QMC studies is
limited to the close surroundings of the (finite-temperature) critical end point of the
first-order line. In addition, we have reanalyzed IPT data for the double occupancy
in the critical region and have demonstrated that it is governed by a critical exponent
of 1/2 rather than the value of 1/3 obtained by Kotliar et al. (2000).

Finally, we have discussed the maximum entropy method (MEM) and its applica-
tion to the analytic continuation of imaginary-time Green functions computed within
QMC. We have demonstrated the strong improvement resulting from our correction
of the QMC code and devised a robust MEM scheme that takes the remaining sys-
tematic errors into account. By applying this method to large sets of precise QMC
measurements, we have calculated the first low-temperature MEM spectra in the
MIT region which do not depend on specially chosen (“annealed”) default models.
The overall high precision of the results is indicated by the good agreement with an-
alytical bounds for the total bandwidth and by the excellent agreement with a sum
rule for the derived real-frequency self-energy (to be discussed in Sec. 4.6).

In view of the excellent internal consistency of our results and the good agreement
with data obtained using other methods (within their respective error bars), our final
phase diagram Fig. 3.50 and other results presented in this chapter should represent
a fairly precise and complete picture of the local properties of the fully frustrated
model. However, they clearly do not represent a complete scenario for any material
featuring a MIT. This follows already from the finite ground-state entropy predicted
in the insulating phase which violates Nernst’s law. A more realistic and consistent
description is possible when the low-temperature phase is ordered already in d =∞,
i.e., for partial frustration. Analytical considerations for the consequences in the case
of varying partial frustration at constant semi-elliptic DOS have been presented in
this chapter. Investigations whether a phase diagram with a topology analogous to
that seen in V2O3 can also be observed in the generic case that frustration induces an
asymmetry of the DOS have recently been initiated under our supervision (Knecht,
2002); at present, this question is still open.

A further significant improvement of the QMC code based on ideas developed
in this thesis and implemented by Knecht (2002) is briefly discussed in App. C;
numerical comparisons shown in this appendix also demonstrate the high accuracy of
the (less general) approach employed within this work. Future DMFT studies could
also greatly profit from a scheme for the direct evaluation of differences in the free
energy of coexisting solutions developed in this chapter.
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Chapter 4

Optical Conductivity

In this chapter, we will discuss electronic transport, in particular the (q = 0) optical
conductivity σ(ω). Transport properties are not only very important technologically,
but can also be probed accurately by a variety of techniques. As we will see below,
measurements, e.g., of reflectivity, electronic energy loss, and of the direct-current
(dc) conductivity are, thus, valuable tools for determining the electronic structure
of materials. Specifically, a metal-insulator transition as discussed in chapter 3 is
signaled by a vanishing Drude weight, i.e., a suppression of σ(ω) at low frequencies
(and specifically for ω = 0).1

We will here focus on the exact theory of transport strictly in the limit of infinite
dimensionality (d → ∞) or, more generally, infinite lattice coordination number
(Z →∞), but also mention implications for an approximate treatment of the finite-
dimensional case. Since all directional transport vanishes in infinite dimensions,2 e.g.,

σxx(ω)
d→∞−→ 0 +O(1/d) (4.1)

for the optical conductivity in x direction, we will consider leading corrections, e.g.,
dσxx(ω) or

∑

α σαα(ω). While the fact that most unscaled transport properties vanish
in high dimensions might be viewed as a conceptual complication, their computation
is much simplified in this limit: due to the effective locality of the vertex function (for
q = 0), their diagrammatic expressions reduce to the bubble diagram. Consequently,
σ(ω) can be evaluated from the full interacting Green function and the unrenor-
malized current vertex. It is important to note that the current vertex introduces
a dependence on lattice structure and hopping parameters beyond the noninteract-
ing DOS so that models which are equivalent in the DMFT with respect to local
properties may differ significantly in terms of transport properties. In fact, we will
show in this chapter that σ(ω) is not uniquely defined on “the Bethe lattice”, i.e., on

1In principle, we could have used results for σ(ω) in order to determine the MIT transition lines
Uc1 and Uc2 in chapter 3. The attainable accuracy is, however, much better for the energy E and for
the double occupancy D since these observables do not require an analytic continuation via MEM.

2Strictly speaking, this statement only applies to total or partial weights, i.e., integrals over finite
frequency ranges and only when the lattice is essentially isotropic, i.e., when the kinetic energy is not
dominated by a subset of directions. In particular, the limits ω → 0 and d→∞ do not necessarily
commute.
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lattices having a semi-elliptic DOS for Z → ∞ (cf. Sec. 2.2) and present formalism
and results for several possible choices. We will demonstrate why some approaches
fail to describe coherent transport and that the extended-hopping general-dispersion
approach proposed in Sec. 2.3 produces the physically most desirable results.

As indicated above, the numerical results of this chapter correspond to a consis-
tent theory which is exact in d =∞. We will also point out how one may alternatively
use the formalism as a local approximation in finite dimensions, e.g., in connection
with LDA calculations (cf. subsection 5.4.3). We will not, however, discuss vertex
corrections which may change the picture completely in d = 3 or even lower dimen-
sions.

The remainder of this chapter is structured as follows: In Sec. 4.1, we introduce
σ(ω) and other dielectric quantities on a phenomenological level, collect relevant sum
rules, point out the relation to experimental results, and discuss the impact of model
abstractions. The Kubo formalism is reviewed in Sec. 4.2 both for continuum and
lattice models. The simplifications arising in d→∞ are discussed in Sec. 4.3 where
we will also point out that the formalism widely used in the literature so far is very
specific to the hypercubic lattice and must be modified in the general case. Variants of
the general formalism applicable to tight-binding models with a semi-elliptic density
of states are studied in Sec. 4.4. Generalizations to models with varying degree of
coherence and to finite dimensions as well as the theory of transport properties for
frustrated lattices with t − t′ hopping are discussed in Sec. 4.5. Finally, we present
numerical results for the Hubbard model with semi-elliptic DOS in Sec. 4.6.

4.1 Definition and General Properties of the

Optical Conductivity

If a system is subjected to an external electric field then, in general, a redistribution
of charges occurs and currents are induced. For small enough fields, the induced
polarization and the induced currents are proportional to the inducing field. If the
Hamiltonian of the unperturbed system is not explicitly time-dependent, we have
specifically for the total current density in linear response,

Jα(r, t) =
∑

β

∫

dr′
t∫

−∞

dt′ σαβ(r, r
′, t− t′)Eβ(r′, t′), (4.2)

where α, β label space directions and E is the (total) electric field. If the system is ho-
mogeneous above some length scale a (e.g., for a lattice spacing a), then the response
to perturbations which are slowly varying on this length scale is also homogeneous,

Jα(r, t) =
∑

β

∫

dr′
t∫

−∞

dt′ σαβ(r − r′, t− t′)Eβ(r′, t′), (4.3)
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which can be Fourier-transformed to yield

Jα(q, ω) =
∑

β

σαβ(q, ω)Eβ(q, ω). (4.4)

Since photons have a much steeper (linear) energy dispersion than electrons within
the Brillouin zone, the transmitted momentum is essentially zero for not too high
energies. Thus, in the optical frequency regime and below we can take the long-
wavelength limit q → 0. For cubic symmetry, the response is then isotropic, i.e., the
conductivity tensor becomes diagonal:3

J(ω) = σ(ω)E(ω). (4.5)

Note that causality, i.e., the restriction to t′ < t in (4.2) and (4.3), implies a retarded
conductivity σ(ω) which is analytic in the upper half plane.

4.1.1 Connection between Conductivity and Reflectivity

Under the conditions used in the derivation of (4.4), the dielectric function ε(ω)
is defined as relating the (coarse-grained) electrical displacement D to the (coarse-
grained) electric field E,4

D(ω) = ε(ω)E(ω). (4.6)

The dielectric function can be directly expressed in terms of the optical conductivity,

ε(ω) = 1 +
4πiσ(ω)

ω
. (4.7)

Note that here σ(ω) here has the dimension of a frequency (or energy) which is only
valid in the Gaussian system of units. Also note the importance of the absolute scale
of σ(ω) which determines qualitative features of ε(ω) as, e.g., the zeros of ε1(ω). For
later use, we also state the equivalent equation valid in the SI system [ε → ε/ε0,
σ → σ/(4πε0)]

εSI(ω) = ε0 +
iσ(ω)

ω
; ε0 = 8.85× 10−12 Fm−1 = 8.85× 10−12 s

Ωm
. (4.8)

In some cases, solids can be prepared in thin enough slices that absorption and
phase shift can be directly measured in transmission experiments in the energy
ranges of interest. Then, the index of diffraction n(ω) determines the phase ve-
locity cmedium(ω) = c/n(ω), i.e., the phase shift in a sample of finite thickness, while
k(ω) quantifies the absorption per wavelength [see, e.g., Hecht (1997) or Landau and
Lifschitz (1990)]. The functions ε(ω) and σ(ω) are obtained from such measurements
via

κ(ω) ≡
√

ε(ω) = n(ω) + ik(ω) , (4.9)

3This is not true at finite q, even in an homogeneous system. Later, in Sec. 4.4, we will also need
to consider the more general case where σ(ω) is still diagonal, but not isotropic.

4Unless stated otherwise, we will here and in the following use the Gaussian system of units
(cgs).
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where the square root is taken such that n is positive, and via (4.7).
If transmission experiments are not possible, but at least good (i.e., smooth and

clean) surfaces can be prepared, then optical properties can still be probed in reflec-
tion mode. The reflectivity for normally incident light is

r(ω) =

∣
∣
∣
∣

1− κ(ω)

1 + κ(ω)

∣
∣
∣
∣

2

=

(
1− n(ω)

)2
+ k2(ω)

(
1 + n(ω)

)2
+ k2(ω)

, (4.10)

Since κ(ω) [like σ(ω) and ε(ω)] is analytic in the upper half plane,5 its real part n(ω)
and its imaginary part k(ω) are related by Kramers-Kronig transformations. Using
information about r(ω) at all frequencies, one can extract n and k by Kramers-
Kronig analysis which yields ε(ω) and finally σ(ω). This procedure and the implicit
extrapolations to frequencies outside the range of measurements can be avoided by
measurements at variable angle Θ and/or polarization of the incident light. In this
case, the reflectivity is given (for permeability µ = 0, i.e., nonmagnetic materials) by
(Stratton, 1941)

r⊥(Θ, ω) =

(
q(Θ, ω)− cos Θ

)2
+ p2(Θ, ω)

(
q(Θ, ω) + cos Θ

)2
+ p2(Θ, ω)

, (4.11)

r‖(Θ, ω) = r⊥(Θ, ω)

(
q(Θ, ω)− sin Θ tan Θ

)2
+ p2(Θ, ω)

(
q(Θ, ω) + sin Θ tan Θ

)2
+ p2(Θ, ω)

, (4.12)

where all quantities are real and [n ≡ n(ω), k ≡ k(ω) as above]

p2(ω) =
1

2

[

k2 − n2 + sin2 Θ +
√

4n2k2 + (n2 − k2 + sin2 Θ)2

]

, (4.13)

q2(ω) =
1

2

[

n2 − k2 − sin2 Θ +
√

4n2k2 + (n2 − k2 + sin2 Θ)2

]

. (4.14)

Since p2 and q2 reduce to k2 and n2, respectively, for normal incidence (Θ = 0) it is
easily checked that (4.11) and (4.12) indeed reduce to (4.10) in this limit.

Transmission experiments, if possible, are not only preferable over reflection
experiments since the Kramers-Kronig analysis or mathematical complications are
avoided, but also, since it is more certain that bulk properties are measured (as
opposed to surface properties).

For illustration, the dielectric functions of a single-mode Lorentz oscillator model6

are shown in Fig. 4.1. Here, we have chosen a nonzero oscillator frequency with a
comparatively small damping term so that the model describes an insulator. As we

5At finite q, this is rigorously true only for the transverse part εt(q, ω); also analytic is the inverse
of the longitudinal part, ε−1

l (q, ω) (v. Baltz, 1997). This distinction vanishes, however, for q = 0.
6This model is based on damped harmonic oscillator modes with weight fj , resonance frequency

ωj , and damping term γj , leading to ε(ω) = 1+4πe2/m
∑

j fj/((w
2
j−w2)−2iγjw); see, e.g., Altarelli,

Dexter, Nussenzveig, and Smith (1972). We use it here as a convenient fit formula producing an
analytic function with a strongly peaked imaginary part. On a phenomenological level, more realistic
curves are easily obtained by using several oscillator levels.
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Figure 4.1: Scheme: dielectric functions in insulator (Lorentz oscillator model). a) dielec-
tric function ε(ω), refractive index n(ω), and absorption coefficient k(ω). Inset: reflectivity
for normal incidence. b) Scaled optical conductivity σ(ω) and electronic energy loss func-

tion Im −1
ε(ω) . Inset: integrals

∫
dω
ωp

8σ(ω)
ωp

(solid line),
∫

dω
ωp

ω
ωp

4
πk(ω) (dash-dotted line), and

∫
dω
ωp

ω
ωp

2
π Im −1

ε(ω) (dotted line) related to the sum rules (4.18)-(4.20).

will discuss in the following subsection 4.1.2, ε(ω)
ω→∞−→ 1 − ω2

p/ω
2 for some plasma

frequency ωp which we used here to rescale ω and σ(ω) so that the resulting plots
are dimensionless. Near the oscillator frequency ω0 ≈ 0.82ωp, the rapid changes in
Re ε(ω) and n(ω) with negative slope show anomalous dispersion. Here, the usual
expression u = c/(1 + dn/dω) for the group velocity of light would imply u > c.
It is not applicable in this frequency range, however, due to the strong absorption
indicated by peaks in Im ε(ω), Reσ(ω), and k(ω). The peak of the reflectivity is at
slightly higher frequencies ω ≈ ωp (inset of Fig. 4.1a). In our example, the absorption
is so strong that Re ε(ω) changes sign at intermediate frequencies. When it vanishes
outside the absorption region (here at ωp,bulk ≈ 1.3ωp), the system is susceptible to a
bulk plasma oscillation since (4.6) then allows for finite electric field without external
field, D ≡ 0. This oscillator mode can be excited by injecting high-energy electrons
which then lose energy in quanta of ~ωp,bulk. More precisely, the distribution of
energy losses for single scattering (transmission through thin slices) is approximately
proportional to the electron energy-loss function −Im {1/ε(ω)} depicted in Fig. 4.1b.

4.1.2 Optical f-sum Rules

The so-called f -sum rules are based on the Thomas-Reiche-Kuhn oscillator sum rule
(Thomas, 1925; Kuhn, 1925; Reiche and Thomas, 1925) for atomic spectra which was
later generalized to the momentum-dependent case (Bethe, 1930). On a phenomeno-
logical level, the sum rules follow from analytic properties of the dielectric functions
and the very general assumption that absorptive processes only extend over a finite
frequency range. Their common unknown parameter, i.e., the plasma frequency ωp,
can only be determined on a microscopic level.
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The Kramers-Kronig equation for the real part of ε(ω) reads

Re ε(ω) = 1 +
1

π
P

∞∫

−∞

dω′ Im ε(ω′)
1

ω′ − ω (4.15)

= 1 +
2

π

∞∫

0

dω′ Im ε(ω′)
ω′

ω′2 − ω2
, (4.16)

where in the second line we used the fact that ε(−ω) = ε∗(ω) since E and D are real.
Under the assumption that excitations (at q = 0) are restricted to a finite energy
range 0 < ω < ωmax, we can take the ω →∞ limit of (4.16),

lim
ω→∞

ω2
(
1− Re ε(ω)

)
=

2

π
lim
ω→∞

ωmax∫

o

dω′ Im ε(ω′)ω′
(

1 +
ω′2

ω2
− . . .

)

=
2

π

∞∫

0

dω′ Im ε(ω′)ω′ =: ω2
p, (4.17)

where ωp is the plasma frequency. Using (4.17) and (4.7) we arrive at the f -sum rule
for the optical conductivity,

∞∫

0

dωRe σ(ω) =
ω2

p

8
. (4.18)

Other useful f -sum rules which follow from (4.17) are

∞∫

0

dω ωk(ω) =
π

4
ω2

p (4.19)

∞∫

0

dω ω Im
−1

ε(ω)
=

π

2
ω2

p . (4.20)

Note that the limit ω →∞ used in the above equations is problematic for several (re-
lated) reasons: most importantly, photons of high frequency have a short wavelength
so that any theory which depends on the long-wavelength limit q → 0 breaks down.
While the range of validity could be enlarged by considering finite q, ultimately the
homogeneity condition is violated when ω & c

a
, for lattice spacing a. In fact, the

response at high frequencies, i.e., (inelastic) x-ray diffraction, must show strong an-
gular dependence due to the lattice structure factor. Furthermore, the excitation of
core electrons will lead to relativistic effects for systems containing heavy nuclei.

Theoretically, these problems may be avoided by considering the jellium model
of interacting electrons in a neutralizing homogeneous background. In this case, the
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value of the plasma frequency only depends on the total electron density n (for an
electron charge e and mass m),

ω2
p =

4πne2

m
, (4.21)

and additional exact sum rules may be derived (Nozières and Pines, 1958; Nozières
and Pines, 1959; Nozières and Pines, 1989). It is an interesting question to what
extent the formalism and this simple result carry over to real systems. The full sum
rules remain valid for real solids (Nozières and Pines, 1989); for a theoretical analysis,
see subsection 4.2.1. At least for light metals like lithium or beryllium (where rela-
tivistic effects are negligible and the homogeneity condition can be met) the integrals
(4.18)-(4.20) should, thus, be observable with ωp given by (4.21). Experimental data
at soft X-ray frequencies ~ω & 100 eV is, however, scarce. Only after an extensive
literature search we could find an accurate experimental verification of the full sum
rule for aluminum (see next subsection).

Alternatively, one may consider partial sum rules, i.e., limit the integrals to some
maximum frequency. This approach is most promising when the valence electrons
are well separated energetically from core electron states. Then, the high-energy
part of the valence electron contribution to dielectric functions is still well defined
and corresponds to a valence electron plasma frequency

ω2
p,valence =

4πnve
2

mc

. (4.22)

Here, nv is the valence electron density and mc is a mass which characterizes the
electron mobility and is renormalized by polarization effects. The polarizability of
ion cores also causes an almost frequency-independent shift of the dielectric function
so that the intermediate asymptotic form of the dielectric function reads ε(ω) ≈
εcore + ω2

p,valence/ω
2.

4.1.3 Experiments

In this subsection, we show experimental results for the dielectric functions and the
optical conductivity of the good metal aluminum. This material was chosen as an
example due to the completeness of the available data which allows for the illustration
of partial sum rules and for checking the universality of the full f -sum rule. Finally,
we will see that photon experiments (reflection or transmission measurements) are
superior over electronic energy-loss spectroscopy (EELS) for determining σ(ω).

Figure 4.2a shows reflectance data for Al in the valence electron energy range
up to ~ω = 22 eV. The reflectivity is asymptotically nearly perfect at very small
frequencies (see Fig. 4.2b), then remains large up to the far ultra violet (UV) range
with a dip at about ~ω ≈ 1.5 eV and decreases quite abruptly at ~ω ≈ 15 eV. By
Kramers-Kronig analysis of this data, Ehrenreich et al. (1963) computed ε(ω) shown
in Fig. 4.2c and σ(ω) as well as the loss function shown in Fig. 4.2d. Here, the metallic
behavior is visible as a Drude peak in Reσ(ω) (not fully shown) and a divergence of
Im ε(ω). The dip in the reflectance finds correspondence in a two-peak structure of
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a)

b)

c)

d)

Figure 4.2: Low-energy optical properties of aluminum: a)+b) measured specular reflec-
tivity; c) corresponding dielectric function ε(ω) = ε1(ω) + iε2(ω). d) Optical conductivity
σ(ω) and loss function −Im ε−1(ω) (Ehrenreich et al., 1963).

σ(ω). The electron energy-loss function −Im ε−1(ω) is peaked at ~ω ≈ 15 eV which
is close to the free valence-electron plasma frequency ~ω0

p,valence ≈ 15.8 eV. Hence,
(4.22) applies for three valence electrons per atom and an only weakly renormalized
mass mc ≈ 1.05m.

As an alternative to defining renormalized electron masses for valence electrons
as in (4.22) one may use the bare mass and introduce effective electron densities.
This is even more physical since the total weight is always proportional to the full
electron density; consequently, the polarizability of core electrons only shifts the
contribution of valence electrons to higher energies without modifying their total
integral. Rescaling the integrands in (4.18)-(4.20) so that the total sum equals the
number of electrons per atom, the weight up to some finite frequency may then be
regarded as the effective number of electrons for that frequency range. As seen in
Fig. 4.3a, the partial sums deviate strongly from each other in and near the low
frequency absorption range ~ω . 15 eV. Since Al is nearly free-electron like, the
effective number corresponding to (4.18) (indicated as “ε2”) saturates very close to 3,
the true valence electron number, while those corresponding to (4.19) and (4.20) are
reduced by a factor of 1/

√
εcore and 1/εcore, respectively. At ~ω ≈ 1 keV, the effective

numbers reach 11 while above 10 keV the sum rules correctly measure a total of 13
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a)

b)

Figure 4.3: Optical properties of aluminum: a) Effective number of valence electrons
defined via partial sum rules (Smith and Shiles, 1978). b) Experimental electron energy
loss spectrum (reflection mode) with different incident electron energies E (Powell and
Swan, 1959).

electrons per atom. A corresponding plot is also shown in the inset of Fig. 4.1b for
the Lorentz oscillator model.

Figure 4.3b shows EELSdata obtained in reflection mode (Powell and Swan,
1959). One can clearly distinguish a peak at ~ω ≈ 15 eV corresponding to the
peak of the electronic energy loss function derived from reflectance data shown ear-
lier in Fig. 4.2d. Additional peaks at multiples of this energy are associated with
multiple energy losses. Additionally, a peak at ~ω ≈ 10 eV is seen which signals the
excitation of a surface plasmon with ωp,surface ≈ ωp,bulk/

√
2. Evidently, the relative

weights of these peaks change upon changing the incident electron energy: with de-
creasing beam energy, the relative probability for multiple scattering decreases while
the importance of surface effect increases. In general, it is difficult to extract even the
shape of the linear-response electronic energy loss function from EELS; an unknown
prefactor then has to be estimated from the sum rule (4.20). More reliable results may
be obtained in transmission EELS experiments, where the contribution from multiple
scattering vanishes with decreasing sample thickness and also momentum-dependent
dielectric functions can be measured (Batson and Silcox, 1983).

4.1.4 Impact of Electronic Model Abstractions

In the previous subsections we have seen that the dielectric functions have important
universal properties and relations. Even the full plasma frequency ωp was found to
be universal, i.e., only dependent on the total electron density, at least in the non-
relativistic limit (this point will be further investigated in subsection 4.2.1). Model
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Figure 4.4: Scheme for σ(ω): Effects of disorder/phonons as well as interband excitations
which would be seen in experiment (a), solid line) have to be identified (dashed and dotted
lines) and subtracted when comparing to b) results of a “clean” valence electron calculation.

abstractions and approximations can violate the f -sum rules; then, the plasma fre-
quency may become dependent on parameters of the model or even on temperature.
Before we treat transport properties and the conductivity sum rule on a microscopic
level in the next sections, we want to discuss the qualitative impact of the neglect of
lattice degrees of freedom and of a reduction to a few valence bands. Furthermore,
we sketch the generic overall behavior of σ(ω) for the Hubbard model.

In Fig. 4.4a, we show schematically the optical conductivity of a typical strongly
correlated metal (solid line). One can distinguish a relatively broad Drude peak
near ω = 0 and an incoherent peak at finite frequencies ω ≈ ω0 with a shoulder
(here at ω ≈ ω0/2). In a single-band picture, ~ω0 roughly corresponds to the local
Coulomb interaction U . Then, the contributions at ω À ω0 have to be interpreted
as interband contributions. Therefore, they have to be quantified (dotted line) and
subtracted in order to define an effective valence electron contribution as shown in
Fig. 4.4b. Often, the width of the Drude peak (dashed line in Fig. 4.4b) is dominated
by lattice degrees of freedom which are not taken into account in purely electronic
models. Therefore, this contribution has been replaced by a much narrower Drude
peak with the same weight in Fig. 4.4b. Clearly, this mapping is somewhat ad-
hoc and not generally reliable.7 Still, the example given here illustrates that results
obtained for an electronic valence-electron model will not in general yield meaningful
estimates for the plasma frequency (not even in the sense of partial sum rules) and
that even the shape of the low-frequency part of σ(ω) may be unrealistic.

In the remainder of this section, we will classify the qualitative behavior of σ(ω)
for electronic models which are defined in the continuum or on a Bravais lattice.
Then, electronic states may be labeled by their (crystal) momentum k, band index
ν, and spin σ. The associated paramagnetic current density operator ̂ and Fermi

7Our example is very similar to an analysis of experimental data for CaVO3 by Rozenberg, Inoue,
Makino, Iga, and Nishihara (1996).
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T = 0 T > 0

U = 0

ω

σ

ω

σ

U > 0

ω

σ

ω

σ

Figure 4.5: Scheme: qualitative behavior of the optical conductivity in Hubbard type
models. For U > 0, one may distinguish metals (solid lines) and insulators (dashed lines).
The thick vertical bars at ω = 0 indicate δ-functions.

velocity vk,ν read8 for a noninteracting dispersion εk,ν

̂ =
∑

k,ν,σ

evk,ν n̂k,ν,σ; vk,ν =
1

~
∇k εk,ν . (4.23)

The important observation which we are heading for is that due to the absence of
dissipation no finite-frequency response arises in the noninteracting limit: In absence
of electron-electron interaction, Ĥ = Ĥ0 =

∑

k,ν,σ εk,νn̂k,ν,σ. We thus have

[̂, Ĥ] = e
∑

k,ν,σ

vk,ν [n̂k,ν,σ, Ĥ0] = 0 (4.24)

⇒ ̂(t) = ei~Ĥt ̂(0) e−i~Ĥt = ̂(0) (4.25)

⇒ σ(ω) = Dδ(ω) , (4.26)

whereD > 0 is the Drude weight. The diamagnetic current could be neglected for this
argument, since its contribution at finite frequencies is purely imaginary. Equation
(4.26) remains valid for static mean-field theories of the density type, i.e., the Hartree
approximation as long as translational invariance is retained. Thus, even in this case,
σ(ω) is reduced to a Drude peak (of zero width). This general behavior is illustrated
in Fig. 4.5, where we also distinguish between zero and finite temperature. Insulating
behavior (dashed lines) is possible only for U > 0. Note that the total weight is in
general temperature-dependent. Later we will see that some models corresponding
to a semi-elliptic Bethe DOS do not yield a Drude peak in the noninteracting limit
since their current operator and their kinetic energy operator do not commute.

8A more thorough introduction of the formalism follows in Sec. 4.2.



186 4. Optical Conductivity

4.2 Kubo Formalism

In this section, we will discuss the formalism leading to expressions for σ(ω) both in
the continuum and on the lattice in enough detail to expose the microscopic origin
and ranges of validity of sum rules.

4.2.1 Kubo Formalism in the Continuum

As reviewed in App. D.1, the interaction of a particle at position r with charge q
with an external time varying electric field may be fully described in terms of a shift
of its momentum by qA(r)/c, where A(r) is the vector potential. Furthermore,
within the Coulomb gauge, the electrical interaction between charged particles is
instantaneous. In the nonrelativistic limit, we can, thus, assume the following first-
quantized electronic Hamiltonian for a number of Ne electrons,9

H = Hint(r1, r2, . . . , rNe
) +

Ne∑

i=1

1

2m

(

pi −
e

c
A(ri, t)

)2

. (4.27)

Here, the interaction Hamiltonian Hint may contain arbitrary interactions of electrons
with a (static) lattice potential as well as electron-electron interactions. This term will
enter the results only implicitly via its influence on the eigenstates of the unperturbed
system and their occupation in the thermal ensemble. From (4.27) and vi = ∇pi

H
we can read off the total current,

∫

dr J(r, t) =
Ne∑

i=1

evi =
Ne∑

i=1

e

m

(

pi −
e

c
A(ri)

)

. (4.28)

In (4.28), we may distinguish a diamagnetic contribution −∑Ne

i=1
e2

mc
A(ri) from the

paramagnetic current, the density of which reads in symmetrized form,10

j(r, t) =
e

2m

Ne∑

i=1

(
piδ(r − ri) + δ(r − ri)pi

)
. (4.29)

Denoting the thermal expectation value11 of some observable O in the presence of
the vector potential by 〈O〉A, the current density is, thus, exactly given by

〈J(r, t)〉A = 〈j(r, t)〉A −
e2

mc
A(r, t)〈n(r, t)〉A . (4.30)

Since we only need the linear response current, i.e., contributions to J which are at
most linear in A, we can take the density expectation value in (4.30) in zeroth or-

der. In the long-wavelength limit, the diamagnetic contribution is then − e2n0

mc
A(r, t),

9Note that following the usual convention the electron charge is here denoted as e, not −e.
10Here and in the following, we use the upper-case symbol J for the total current and the lower-

case symbol j for the paramagnetic current or its density.
11Due to the explicit time dependence of H, we here have to use a generalized definition of the

thermal average in terms of a time-dependent density operator ρ̂(t); see App. D.2.
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where n0 is the average density. The remaining problem is the calculation of 〈j(r, t)〉A
in linear order in A. For this purpose, it suffices to consider the linear perturbing
part of the Hamiltonian12 which may be expressed as

H ′(t) = −1

c

∫

dr j(r, t) ·A(r, t) . (4.31)

From (D.2) we have for periodic field E(r, t) = Eqe
i(q·r−ωt)

A(r, t) = − ic
ω

E(r, t) . (4.32)

Thus, we can write, switching to second quantized notation (with V denoting the
total volume),

Ĥ ′(t) = −V
c

̂−q(t) ·Aq(t) =
iV

ω
̂−q(t) ·Eqe

−iωt . (4.33)

Using (D.21) and assuming that the response is restricted to the same wave vector
as the perturbing field, i.e., for not too short wavelengths, the paramagnetic linear
response current reads (denoting directions as α or β),

〈̂q,α(ω)〉A = − iV

ω + i0+
Eq,β(ω) 〈〈̂q,α, ̂−q,β 〉〉(ω + i0+) (4.34)

From (4.4), (4.30), and (D.22) we get the general expression for continuum systems13

σαβ(q, ω) =
V

~(ω + i0+)

∞∫

0

dt ei(ω+i0+)t〈[̂†q,α(t), ̂q,β(0)]〉+ i
n0e

2

m(ω + i0+)
δαβ (4.35)

Here, the time dependence of the operator is in the interaction picture (see Sec. D.2)
and the long wavelength limit has been used to replace n(r, t) by the average density
n0. In the optical limit q → 0, the current density operator ̂ = ̂† is hermitian. For
systems with cubic symmetry, the current flow in perpendicular directions is then
uncorrelated and σαβ(0, ω) reduces to the scalar σ(ω). Equation (4.35) is correct
both for T = 0 (then the outer brackets indicate the ground state expectation value)
and for T > 0 (when the brackets imply thermal averaging) and for longitudinal as
well as transverse electric fields.

Since the susceptibility, i.e., the integral in (4.35) falls off as 1/ω or faster [cf.
(D.25)], the high-frequency limit of σ(ω) is determined by the second, diamagnetic
term which is proportional to the squared free plasma frequency ω2

p = 4πn0e
2/m.

Thus, the frequency sum (4.19) is unchanged by the interactions of electrons, both
with the lattice ions and among themselves,

∞∫

0

dωRe σαβ(ω) =
1

2

∞∫

−∞

dω
n0e

2

m
πδ(ω) δαβ =

ω2
p

8
δαβ (4.36)

12Note that the quadratic term in H had to be considered for deriving the correct expression for
the full current.

13Note that (4.35) is valid in Gaussian units. For SI units, its right hand side has to be divided
by 4πε0.
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In the noninteracting limit, where correlations vanish, Re σ(ω) reduces to the dia-
magnetic δ-function contributions. Interactions shift weight from ω = 0 to finite
frequencies without changing the total weight. Thus, the full universal f -sum rule
is indeed found to be valid, at least within the (zeroth order) Born-Oppenheimer
approximation and in the limit that optical absorption decays below a cutoff energy
E with E

~c
¿ π

a
.

4.2.2 Kubo Formalism on a Lattice

In Wannier representation, the vector potential can be treated (Kohn, 1964; Shastry
and Sutherland, 1990; Scalapino, White, and Zhang, 1992; Dagotto, 1994) by a gauge
transformation of the Wannier wave functions Φl(r) centered at site Rl,

Φl(r) 7→ Φ̃l(r, t) =

[

exp

(

i
e

c~

Rl∫

R0

dr ·A(r′, t)

)]

Φi(r), (4.37)

where the free choice of R0 determines the arbitrary overall phase factor. In the
long-wavelength limit q → 0, the vector potential can be taken out of the integral.
Then, the change in the Hamiltonian consists of multiplying the hopping elements
defined in (1.10) by so-called Peierls phase factors,14

tij = t0ij exp
(

−i e
c~

(Ri −Rj) ·A
)

. (4.38)

Note that only hopping elements with components parallel to the vector field A
are modified. In comparing (4.38) with (D.3) we identify the additional factor as
exp(−i∆S/~), where ∆S is the field contribution to the action for the world line
connecting the lattice sites in absence of a scalar potential φ.

Before considering the general case, we specialize on the more commonly treated
case of the hypercubic tight-binding model with nearest-neighbor hopping, where the
unperturbed kinetic energy is given by K̂0 = −t∑〈ij〉,σ

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
. Expanding

the phase factors to lowest orders in A,15 we obtain the modified kinetic energy:

K̂ = K̂0 +
d∑

α=1

(
− V

c
̂αAα +

e2a2

2~2c2
K̂0
αA

2
α + . . .

)
(4.39)

where the lattice paramagnetic current density operator and the kinetic energy in

14While, in general, the interaction matrix elements defined in (1.11) also acquire Peierls phases,
on-site elements and intersite contributions of the density-density type remain unchanged.

15We need quadratic order in order to retain the linear contribution to the current operator, Ĵα.
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direction α are given by (lattice constant a)16

̂α = − ieta
V ~

∑

i,σ

(

ĉ†iσ ĉi+eασ
− ĉ†i+eασ

ĉiσ

)

, (4.40)

K̂0
α = −t

∑

i,σ

(

ĉ†iσ ĉi+eασ
+ ĉ†i+eασ

ĉiσ

)

. (4.41)

The full current density operator is obtained by variation of K̂ with respect to the
vector potential (Scalapino et al., 1992),

Ĵα = − c

V

δK̂

δAα
= ̂α +

e2a2

V c~2
K̂0
αAα. (4.42)

As in the continuum case, the conductivity can be expressed in terms of a correlation
function and of the diamagnetic contribution,

σαα(ω) =
iV

ω
〈〈̂α, ̂α〉〉(ω + i0+)− i e2a2

V ~2(ω + i0+)
〈K̂0

α〉 (4.43)

Evidently, the reduction to a single-band model has changed the diamagnetic contri-
bution and, consequently, the sum-rule to a nonuniversal form. For the assumption
used in deriving (4.43) of nearest-neighbor hopping on a hypercubic lattice, the fre-
quency sum is seen to be proportional to the kinetic energy,

∞∫

0

dω σαα(ω) = −π
2

e2a2

V ~2
〈K̂0

α〉 = − πe2

2d~2
a2−d 〈K̂0〉

N
. (4.44)

For the more general case of arbitrary hopping on a Bravais lattice, we have to
consider that the phase shift due to the vector potential A increases with hopping
distance. For later use, we want to obtain expressions in momentum representation.
Thus, we assume for the unperturbed Hamiltonian (with band index ν),

Ĥ =
∑

k,ν,σ

εk,ν n̂k,ν,σ + Ĥee

{
n̂i,ν,σ

}
, (4.45)

where the interaction term is of the density-density type.17 Due to inversion symme-
try we can always write for a selected lattice direction x,

εk,ν =
∞∑

n=1

fν,n(k⊥) cos(naxkx) (4.46)

16Note that for this particular case and up to prefactors, the kinetic energy and the current
operator are sums over the real and the imaginary part, respectively, of the same bond hopping
operator.

17Note that, in contrast to the continuum formulation, the restriction to density-density type
interaction terms is in general a serious approximation in the Wannier representation; see subsection
1.1.3.



190 4. Optical Conductivity

where k⊥ is the projection of k on directions perpendicular to ex. Since the nth

term in (4.46) contains hopping to nth-nearest neighbors, we can use straightforward
generalizations of (4.39) and (4.42) to find for the paramagnetic current density
operator ̂x and diamagnetic current density operator ̂ dia

x , respectively,

̂x = −eax
V ~

∑

k,ν,σ

n̂k,ν,σ

∞∑

n=1

nfν,n(k⊥) sin(nkx) =
e

V ~

∑

k,ν,σ

n̂k,ν,σ
∂

∂kx
εk,ν (4.47)

̂ dia
x =

e2A

V c~2

∑

k,ν,σ

n̂k,ν,σ
∂2

∂k2
x

εk,ν (4.48)

We, thus, obtain for the conductivity,

σαα(ω) =
ie2

V ~2(ω + i0+)

∑

ν,ν′,σ,σ′

∑

k,k′

vk,ν,αvk′,ν′,α〈〈n̂k,ν,σ, n̂k′,ν′,σ′ 〉〉(ω + i0+)

+
ie2

V ~2(ω + i0+)

∑

k,ν,σ

〈n̂k,ν,σ〉
∂2

∂k2
α

εk,ν ,

(4.49)

where vk,ν,α = ∂
∂kα

εk,ν is the α component of the Fermi velocity of band ν for mo-
mentum k. Consequently, the f -sum rule reads

∞∫

0

dω σαα(ω) =
πe2

2V ~2

∑

k,ν,σ

〈n̂k,ν,σ〉
∂2

∂k2
α

εk,ν . (4.50)

For a full electronic model, we can use the free dispersion for a single band with
∂2εk
∂k2 = ~

2

m
which leads to the free diamagnetic term and, thus, to the free sum rule

(4.21), i.e.,
∫

dω σαα(ω) =
ω2

p

8
with ω2

p = 4πne2

m
.

4.2.3 General Confirmation of the f-sum Rule

While the fact that the paramagnetic current will not contribute to the f -sum rule
follows on quite general grounds from (D.25), we can drop the condition of a bounded
spectrum used in Sec. D.2. In the course of re-deriving the sum rule (4.50), we will also
identify a contribution to the paramagnetic current which cancels the diamagnetic
current. In this subsection, only the single-band case is considered explicitly.

For the Hamiltonian (4.45), the polarization operator P̂ =
∑

i rin̂i commutes
with the interaction term

[Ĥee, P̂ ] =
∑

i

ri[Ĥee, n̂i] = 0 . (4.51)

and can be used for expressing the current density operators:

̂α =
e

V

d

dt
P̂α = − ie

V ~
[P̂α, K̂] (4.52)

̂ dia
α =

e2A

V c~2
[P̂α, [P̂α, K̂]] . (4.53)
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Thus, we can rewrite the current-current correlation function,

〈〈̂α, ̂α〉〉(ω) =
ie

V ~

∞∫

0

dt eiωt〈[ d

dt
P̂α(t), ̂α(0)]〉 (4.54)

=
ie

V ~

(

eiωt〈[P̂α(t), ̂α(0)]〉
∣
∣
∞
0
−

∞∫

0

dt (iω)eiωt〈[P̂α(t), ̂α(0)]〉
)

(4.55)

= − ie

V ~
〈[P̂α, ̂α]〉+

e ω

V ~

∞∫

0

dt eiωt〈[P̂α(t), ̂α]〉 (4.56)

The operator in the first term, − ie
V ~

[P̂α, ̂α] = − e2

V 2~2 [P̂α, [P̂α, K̂]], cancels the diamag-
netic contribution to σαα(ω). Thus, the f -sum reads,18

∞∫

0

dωReσαα(ω) =
1

2

ie

~

∞∫

0

dt 2πδ(t)〈[P̂α(t), ̂α]〉 (4.57)

=
πe2

2V ~2
〈[P̂α, [P̂α, K̂]]〉 , (4.58)

which reduces to (4.50) since [P̂α, [P̂α, K̂]] =
∑

k,σ n̂k,σ
d2

dk2
α
εk.

From (4.56), we can also express the total optical conductivity as

σαα(ω) = e〈〈P̂α, ̂α〉〉(ω) . (4.59)

This form makes the qualitative behavior seen in Fig. 4.5 physically plausible: In
the presence of (small) interactions, quasiparticles acquire a finite lifetime and, thus,
correlations generically decay in real time which leads to σ(ω) being finite (i.e., not
infinite) at all ω. At T = 0, however, quasiparticles directly at the Fermi surface
are still stable and may give rise to a (reduced) Drude δ-peak. Within Fermi liquid
theory, the reduction factor is Z, the quasiparticle weight. At finite T , all lifetimes
are finite (but still large near the Fermi surface) so that the Drude peak broadens with
increasing interaction until both Fermi liquid theory breaks down and the Drude peak
may disappear in the incoherent background or vanish when a gap opens. Assuming,
on the other hand, that σ(ω) remains finite at all ω, one can as well work with the
real part of the paramagnetic contribution for ω > 0 as given by (4.49) and obtain
σdc as limω→0 σ(ω). In fact, in numerical calculations at T = 0 the Drude weight is
often obtained via the f -sum rule (Dagotto, 1994).

18Strictly speaking, the integral on the right hand side of (4.57) is undefined. For a more rig-
orous proof, one needs to keep a “small” real η > 0, use Re

∫∞

0
dωeiω(t+iη) = η/(η2 + t2) and

the fact that Im 〈i[Â, B̂]〉 = 0 for Hermitian operators Â, B̂. Then, (4.58) can be derived from
limη→0 Re

∫∞

0
dω

∫∞

0
dteiω(t+iη)f(t) = f(0+) limη→0

∫∞

0
dtη/(η2 + t2) = f(0+)π/2 for a real function

f(t).
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4.3 Optical Conductivity in the Limit d → ∞

In this section, we will initially follow the conventional treatment used for the deriva-
tion of σ(ω) for the hypercubic lattice with NN hopping for d → ∞ (Pruschke
et al., 1993), but keep the treatment general for a single-band model defined on a lat-
tice which is periodic and exhibits inversion symmetry in current direction x.19 In this
case, (4.49) implies for the paramagnetic contribution to the optical conductivity20

σxx(ω) =
ie2

V ~2(ω + i0+)

∑

k,k′

∑

σσ′

vkx
vk′

x
〈〈n̂kσ, n̂k′σ′ 〉〉(ω + i0+) . (4.60)

For simplicity, we have here introduced the notation vkx
for the x component of

the vector vk. In a diagrammatic series expansion, the correlation function can be
expressed in terms of interacting Green function lines and particle-hole irreducible
vertex functions,

σxx ∝ vkx

k

k

vkx
+ vkx Γ

k

k

k′

k′

vk′
x

+ vkx

k

k

Γ

k′′

k′′

Γ

k′

k′

vk′
x

+ . . .

The particle-hole irreducible vertex function Γ becomes effectively local in d→∞,
i.e., becomes independent of k, k′. Thus, the summations over k, k′ can be performed
independently (Khurana, 1990; Pruschke et al., 1993; Georges et al., 1996). Further-
more, the dispersion has even parity with respect to kx, i.e., ε(−kx,k⊥) = ε(kx,k⊥).
Therefore, Gkσ(ω) = 1/(ω − εk − Σσ(ω)) also has even parity while vkx

has odd
parity with respect to kx. Consequently, each individual k summation involving only
one current vertex vkx

vanishes:

vkx

k

k

= 0 .

19For lattices which are not periodic in all directions, one would have to use the replacement
k→ (ε, kx) in the following. Thus, we would label eigenstates of the noninteracting system by their
momentum in current direction and total energy instead of the full momentum.

20Here, the diamagnetic contribution is neglected so that resulting expressions will be complete
only for Reσ(ω) for ω 6= 0.
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Thus, vertex corrections do not contribute in d → ∞ and (4.60) reduces to the
bubble contribution (with inverse temperature β and Matsubara frequencies iωn)

σxx(iν) =
e2

V ~2ν
T
∑

k,σ,ωn

v2
kx
Gkσ(iωn)Gkσ(iωn + iν) . (4.61)

The momentum independence21 of Σ(ω) can now be used for replacing the momentum
sum by an energy integral (where N denotes number of sites)

σxx(iν) = 2
e2

~2ν

N

V

∞∫

−∞

dε ρ̃xx(ε)T
∑

n

Gε(iωn)Gε(iωn + iν) . (4.62)

Here, we have introduced [cf. (3.11)]

Gε(iωn) ≡ Gεk,σ(iωn) =
1

iωn − εk − Σσ(iωn)
(4.63)

and

ρ̃xx(ε) :=
1

N

∑

k

v2
kx
δ(ε− εk) . (4.64)

and specialized on the paramagnetic case. The factor of 2 in (4.62) is for spin degen-
eracy. Note that ρ̃xx(ε) = O(1/d); in the isotropic case, we have dρ̃xx(ε) = ρ̃(ε) :=
1
N

∑

k |vk|2δ(ε− εk). Analytic continuation of (4.62) yields

Re σxx(ω) = σ0

∞∫

−∞

dε ρ̃xx(ε)

∞∫

−∞

dω′Aε(ω
′)Aε(ω

′ + ω)
nf(ω

′)− nf(ω + ω′)

ω
, (4.65)

where

Aε(ω) = − 1

π
ImGε(ω) , nf(ω) =

(
1 + eβ(ω−µ)

)−1
, (4.66)

and

σ0 :=
2πe2

~2

N

V
. (4.67)

We note that the limit of infinite dimensionality enters (4.65) only via the locality
of the self-energy and of the irreducible vertex function. Using both properties as
an approximation, (4.65) may therefore also be applied in finite dimensions. For
numerical results, we will set e, ~, and the lattice spacing a to unity which corresponds
to σ0 = 2π.

21If Σ(ω) was momentum-dependent, the momentum sum in the general bubble-sum expression
(4.61) could not be replaced by an energy integral. For piecewise constant Σ(ω) like in the DCA,
however, a generalization of (4.152) could be applied on each patch. The individual contributions
for each value of the coarse-grained momentum would then have to be summed up for the total
optical conductivity.
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4.3.1 Optical Conductivity for the Hypercubic Lattice

For a hypercubic lattice with NN hopping, ρ̃xx(ε) is proportional to the DOS,

ρ̃hc
xx(ε) =

t∗2a2

d
ρhc(ε) (4.68)

We will here first reproduce Pruschke et al.’s (1993) proof using the same Fourier
transform technique that had been used before for calculating the (Gaussian) DOS
of the hc lattice (Müller-Hartmann, 1989a) and then derive a shorter version which is
more general. Using εk = −2t

∑d
α=1 cos(kα) and ∂εk

∂kα
= 2t sin(kα), which corresponds

to lattice spacing a = 1, ρ̃hc
xx(ε) transforms as follows,

∞∫

−∞

dε ρ̃xx(ε) eisε =

[ π∫

−π

dk

2π
e−2ist cos(k)

]d−1 [
π∫

−π

dk

2π
4t2 sin2(k)e−2ist cos(k)

]

(4.69)

= 2t2
[
J0(2st)

]d
(

1 +
J2(2st)

J0(2st)

)

(4.70)

= 2t2 exp

[

d ln
(

1− (2st)2

4
+ · · ·

)

+ ln
(

1 +
(2st)2

8
+ · · ·

)]

= 2t2 exp

[

−(st∗)2

2
+O(

1

d
)

]

. (4.71)

Keeping only leading terms, transforming back, and determining the dependence on
a from scaling, one obtains (using Z = 2d)

ρ̃xx(ε) = 2t2a2ρ(ε) , (4.72)

which confirms (4.68). Thus, the conductivity reads,

Re σhc
xx(ω) =

2πe2a2t∗2

d~2

N

V

∞∫

−∞

dε ρ(ε)

×
∞∫

−∞

dω′Aε(ω
′)Aε(ω

′ + ω)
nf(ω

′)− nf(ω + ω′)

ω
.

(4.73)

While the above approach using Bessel functions Jν(x) has the advantage that it
allows for the calculation of corrections terms of O(1/d) and beyond, the d → ∞
result can be obtained more directly: Let us assume that the total noninteracting
kinetic energy separates into a contribution depending only on hopping in the current
direction and a contribution which does not involve hopping in that direction and
that the latter contribution dominates the bandwidth,

εk = ε⊥k⊥
+ εxkx

,

√

〈(εxkx
− 〈εxkx

〉)2〉
√

〈(εk − 〈εk〉)2〉
= O(1/d) . (4.74)
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Then, to leading order,

ρ̃xx(ε) =
1

N

∑

k

v2
kx
δ(ε− ε⊥k⊥

) = ρ(ε)
ax
2π

π/ax∫

−π/ax

dkx v
2
kx
. (4.75)

Thus, expression (4.73) directly applies to all stacked lattices in d → ∞ when hop-
ping in current direction (lattice spacing ax) is restricted to nearest neighbors with
amplitude t∗/

√
Z. The suitable generalization for arbitrary-range hopping in current

direction follows from (4.75). Note that the definition of hopping elements in cur-
rent direction does not impact any local properties and that the frequency sum over
σxx(ω) will be directly related to local properties (such as the kinetic energy) only
for isotropic models.

4.3.2 f-sum Rule within the DMFT

In this subsection, we will derive a very general new form of the f -sum rule for the
optical conductivity which applies to all cases where expression (4.65) for σ(ω) is
used, in particular to d = ∞. We do not need to make any assumptions about the
functional form of ρ̃xx(ε) other than that it has to be piecewise differentiable. In
particular, we do not need to know the dispersion εk; thus, our results can even be
applied to lattices without (full) k-space. Furthermore, we can show that the sum
rule is fulfilled also for approximate DMFT solutions as long as the self-energy is
causal. Finally, we present an efficient computation scheme for the frequency sum
directly on the imaginary axis.

We start with the noninteracting limit. Then the spectral function becomes a
δ-function, Aε(ω)→ δ(ω − ε), and we obtain from (4.65) [with σ0 defined in (4.67)],

∞∫

0

dω σxx(ω) =
σ0

2

∞∫

−∞

dε ρ̃xx(ε)

∞∫

−∞

dω

∞∫

−∞

dω′ δ(ω′ − ε)δ(ω + ω′ − ε)nf(ω
′)− nf(ω

′ + ω)

ω

= −σ0

2

∞∫

−∞

dε ρ̃xx(ε)
d

dε
nf(ε) =

σ0

2

∞∫

−∞

dε ρ̃′xx(ε)nf(ε) (4.76)

=
σ0

4

〈 ρ̃′xx(ε)

ρ(ε)

〉
. (4.77)

Here and in the following, the prime denotes the derivative with respect to the argu-
ment, ρ̃′xx(ε) := d

dε
ρ̃xx(ε). No boundary terms arise in the partial integration in (4.76)

since ρ̃(ε) vanishes at the band edges. We further introduced the notation

〈f(ε)〉 :=

∞∫

−∞

dε ρ(ε) (nε,↑ + nε,↓) f(ε) , (4.78)

where the expectation value of the generalized momentum distribution function is for
arbitrary interaction given in terms of Fermi distribution function nf(ω), chemical
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potential µ, and spectral function Aε,σ(ω) by

nε,σ := 〈n̂ε,σ〉 =

∞∫

−∞

dω nf(ω − µ)Aε,σ(ω) . (4.79)

In the paramagnetic case, nε ≡ nε,σ. While the expression (4.77) was derived for the
noninteracting limit, and, thus, explicitly only determines the weight of the Drude
peak, one might suspect that it remains valid in connection with (4.79) in the in-
teracting case. This would amount to a generalization of the hc sum rule (4.44),
where (for t∗ = 1 and a = 1), ρ̃(ε) = ρ(ε) = e−ε

2/2 and 〈ρ̃′(ε)/ρ(ε)〉 = 〈−ε〉 is minus
the kinetic energy. For a proof of (4.77) in the general case, we will show that the
frequency dependent part in (4.65), denoted as I(ε), sums up to −dnε/dε,

I(ε) =

∞∫

−∞

dω

∞∫

−∞

dω′Aε(ω
′)Aε(ω

′ + ω)
nf(ω

′)− nf(ω
′ + ω)

ω
(4.80)

=

∞∫

−∞

dω′′
∞∫

−∞

dω′Aε(ω
′)Aε(ω

′′)
nf(ω

′)− nf(ω
′′)

ω′′ − ω′ (4.81)

=

∞∫

−∞

dω′ nf(ω
′)Aε(ω

′)

∞∫

−∞

dω′′ Aε(ω
′′)

ω′′ − ω′

+

∞∫

−∞

dω′′ nf(ω
′′)Aε(ω

′′)

∞∫

−∞

dω′ Aε(ω
′)

ω′ − ω′′ (4.82)

=
2

π

∞∫

−∞

dω nf(ω) ReGε(ω) ImGε(ω) (4.83)

= − 1

π

∞∫

−∞

dω nf(ω)
d

dε

Im Σ(ω)

(ω − ε− Re Σ(ω))2 + Im Σ(ω)2
(4.84)

= − d

dε
nε . (4.85)

Thus, the f -sum rule for the optical conductivity within the DMFT, i.e., within
the bubble approximation with a k-independent self-energy reads

∞∫

0

dω σxx(ω) =
σ0

2

∞∫

−∞

dε ρ̃xx(ε)
(

− dnε
dε

)

(4.86)

=
σ0

2

∞∫

−∞

dε ρ̃′xx(ε)nε =
σ0

4

〈 ρ̃′xx(ε)

ρ(ε)

〉
. (4.87)

This sum rule is of great practical value as a check of numerical results. Note that it
cannot only be evaluated from real-frequency data, but also directly on the imaginary
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axis, since

− dnε
dε

=
1

π

∞∫

−∞

dω Im
(
G2
ε(ω)

)
nf(ω) = T

∑

n

G2
ε(iωn)

= T
∑

n

(ε+ Re Σn)
2 − (ωn − Im Σn)

2

(
(ε+ Re Σn)2 + (ωn − Im Σn)2

)2 . (4.88)

Since the terms in (4.88) decay as 1/ω2
n, the sum over n does not require additional

convergence factors. Furthermore, due to the fast convergence, the sum is insensitive
to the large-frequency behavior of the self-energy. Since, on the other hand, QMC
methods in general and the particular Fourier-transform techniques used in this work
do not yield good estimates for Σn at large frequencies, the estimate for (4.88) will be
even much better conditioned than, e.g., the estimate (3.10) for the kinetic energy.
In fact, we found that computing nε by integrating over dnε/dε as given by (4.88)
reduces the ∆τ error for the kinetic energy considerably when compared with the
direct computation (3.10).

4.3.3 f-sum Rule and General Dispersion Formalism

Within the framework of the general dispersion method developed in Sec. 2.3, the full
noninteracting dispersion εk can be written in terms of the transformation function
F and the dispersion εhc

k of the hypercubic lattice with NN hopping only. Then, the
derivatives appearing in (4.47) through (4.50) read

∂εk
∂kx

=
∂

∂kx
F(εhc

k ) = F ′(εhc
k )
∂εhc

k

∂kx
(4.89)

and
∂2εk
∂k2

x

= F ′(εhc
k )
∂2εhc

k

∂k2
x

+ F ′′(εhc
k )

(
∂εhc

k

∂kx

)2

. (4.90)

Using (for a = 1)

εhc
k =

√

2

d

d∑

α=1

cos(kα);
∂εhc

k

∂kx
= −

√

2

d
sin(kx);

∂2εhc
k

∂k2
x

= −
√

2

d
cos(kx) (4.91)

we can carry out the sum in (4.64)

ρ̃(ε) = lim
d→∞

dρ̃xx(ε)

=
1

N

∑

k

lim
d→∞

d
(∂εk
∂kx

)2

δ(ε− εk)

= lim
d→∞

d

(2π)d

∫

dkx

∫

dk⊥
(
F ′(εhc

⊥ (k⊥) + ε‖(kx))
)2 2

d
sin2(kx)

× δ
(
ε−F

(
εhc
⊥ (k⊥) + ε‖(kx)

))

=

[

lim
d→∞

1

(2π)d−1

∫

dk⊥
(
F ′ (εhc

⊥ (k⊥)
))2

δ
(
ε−F

(
εhc
⊥
))
]

1

2π

∫

dkx 2 sin2(kx)

= ρ(ε)
(
F ′(F−1(ε)

)2
, (4.92)
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where we have exploited the fact that the energy of the hypercubic lattice separates
into contributions depending on kx and on components of k perpendicular to the x
direction, respectively. Since the former is of order 1/d it could be neglected in the
fourth line of (4.92). In an analogous fashion one can compute the sum in (4.50)

lim
d→∞

∑

k,σ

〈n̂k〉 d
∂2εk
∂k2

x

= 2

∞∫

−∞

dε ρ(ε)
[
F ′′(F−1(ε))−F ′(F−1(ε))F−1(ε)

]
〈n̂ε〉 (4.93)

Finally, since ρ̃′(ε) is related with the second derivative of the dispersion,

d

dε
ρ̃(ε) =

d

dε

((
F ′(F−1(ε)

))2
ρ(ε)

)

=
d

dε

(
F ′(F−1(ε)

)
ρhc
(
F−1(ε)

))

= F ′(F−1(ε)
) (
ρhc
)′(F−1(ε)

) (
F−1(ε)

)′

+F ′′(F−1(ε)
) (
F−1(ε)

)′
ρhc
(
F−1(ε)

)

=
(
ρhc
)′(F−1(ε)

)
+
F ′′(F−1(ε)

)

F ′
(
F−1(ε)

) ρhc
(
F−1(ε)

)

=
[
F ′′(F−1(ε)

)
−F−1(ε)F ′(F−1(ε)

)]
ρ(ε) (4.94)

we can reformulate the general DMFT sum rule (4.87) in terms of the dispersion:

∞∫

0

dω σxx(ω)
(4.87)

=
σ0

4d

〈 ρ̃′(ε)

ρ(ε)

〉

(4.94)
=

σ0

4d

〈
F ′′(F−1(ε)

)
−F−1(ε)F ′(F−1(ε)

)〉

(4.93)
=

σ0

4

∑

k,σ

〈n̂kσ〉
∂2εk
∂k2

x

.

(4.95)

Since (4.95) is equivalent to (4.50) for a single band, we have demonstrated the
consistency of our formalism.

4.4 Optical Conductivity for the Bethe Lattice

As discussed in Sec. 2.2, the Bethe “lattice” is more accurately labeled as a tree (a
special planar graph) since it is does not constitute a regular lattice. In fact, the
periodicity of a regular lattice and the associated graph formed by, e.g., its nearest-
neighbor bonds generally imply the existence of an infinite number of inequivalent
loops for Z > 2 while the Bethe “lattice” is defined by the complete absence of
loops (and a constant number of nearest neighbors relative to each site). Due to its
definition in topological terms only, concepts like directions, angles, and distances
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a) b) c)

Figure 4.6: Bethe lattice: equivalent schematic representations of portions of a Bethe
lattice for Z = 4.

of bonds or between sites are a priori undefined for the Bethe lattice.22 It is not
possible to embed the Bethe lattice in any dimension so that it is locally isotropic
with respect to NN bond lengths and angles. Thus, no k space can be associated
with the Bethe lattice. These facts are illustrated by the three equivalent schematic
representations of finite portions of the Bethe lattice for Z = 4 in Fig. 4.6. In the
conventional tree-like drawing Fig. 4.6a, the sites are arranged in levels. Each site
is connected by one bond to the lower level while K = Z − 1 bonds extend to the
upper level. In the planar drawing Fig. 4.6b, we have chosen to arrange the bonds
with constant angle but geometrically decreasing bond length counted from some
central site so that the total spatial extent of the full graph is finite (with both outer
and inner surfaces). Drawing Fig. 4.6c, finally, illustrates a layout of the lattice on
stacked planes where one central site on each plane is connected to the neighboring
planes. Since the different layouts leave the topology invariant, they correspond to
the same (unperturbed) lattice Hamiltonian and, therefore, share all local properties
for arbitrary coordination number Z.

Consideration of directional transport such as the optical conductivity σ(ω) obvi-
ously requires at least one direction to be defined; a finite conductivity can only arise
if some bonds are nonorthogonal with respect to this direction. In this section, we will
first explore the possibilities strictly for the Bethe lattice, i.e., for fixed topology, and
then also in the DMFT context, i.e., for fixed local properties in the limit Z → ∞.
Figure 4.6a suggests applying the fields in the vertical direction. For equidistant
levels and in the long-wavelength limit this definition would at first sight resemble
the situation in current direction in regular lattices. The uniform current per bond
expected from linear response theory within this picture (cf. subsection 4.4.1) would,
however, change the charge on each bond due to the lack of inversion symmetry and
the broken translational invariance. Then, the system would act more like a capacitor

22Therefore, hopping matrix elements cannot be computed from Wannier functions, but have to
be regarded as independent parameters of an abstract model.
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than as a usual conductor. For a uniform current flow, one would have to balance
incoming and outgoing current on each site; in the long-wavelength limit this would
amount to geometrically reducing the level spacing upward by a factor of 1/(Z − 1)
and, consequently, imply a semi-finite lattice. In fact, the latter situation is very
similar to that depicted in Fig. 4.6b for which any current definition would also seem
artificial. In contrast, the layout depicted in Fig. 4.6c is translationally invariant in
the stacking direction so that fields and currents can be unambiguously defined in
this direction. The main drawbacks of this interpretation are that the lattice sites
within a plane are then no longer equivalent and that the current flow is limited to
a single chain of bonds and, thus, does not scale to the thermodynamic limit. As
we will show below, there is also no Drude peak in the noninteracting limit for this
model.

Clearly, the pathologies of the Bethe lattice are even worse for transport phe-
nomena than for local properties.23 Still, the availability of DMFT data has led
many researchers to trying to extract meaningful results for transport properties, in
particular σ(ω), as well. Rozenberg et al. (1995) just ignored the difficulties, used
the formalism valid for the hypercubic lattice, and wrongly stated that the hc f -
sum rule (4.44) was still observed (cf. subsection 4.4.3). Freericks found a derivation
within the “tree level picture” Fig. 4.6a (Freericks and Jarrell, 1995a; Freericks, 2000).
Stumpf (1999) discussed σ(ω) for the single-link stacked picture Fig. 4.6c. In con-
trast to above approaches, Uhrig and Vlaming (1993) explored the freedom within
the DMFT of changing terms of O(1/d) in the Hamiltonian and computed σ(ω) for
stacked Bethe lattices.

For the remainder of this section, we attempt a systematic and exhaustive dis-
cussion of ways of defining and computing σ(ω) consistently on the basis of DMFT
calculations using a semi-elliptic DOS. For each choice, we characterize the general
behavior of σ(ω) and the specific form of the f -sum rule. Specifically, the derivations
strictly for the Bethe lattice by Freericks and by Stumpf are discussed in subsection
4.4.1 and subsection 4.4.2, respectively. Going beyond the cited work, we point out
an inconsistency in the former approach and explain the lack of coherent transport
in the latter. Conductivity for stacked lattices is reviewed in a broad context in sub-
section 4.4.3. In subsection 4.4.4, we show that full off-diagonal disorder generally
leads to a very similar expression for σ(ω) as the single-link stacked approach by
Stumpf. Finally, we show that our generalized-dispersion approach for the first time
yields definition and expressions for an isotropic conductivity corresponding to the
semi-elliptic Bethe DOS in subsection 4.4.5.

4.4.1 Treelike Layout of the Bethe Lattice

In this subsection, we will discuss a formalism developed by Freericks which is based
on the treelike layout of the Bethe lattice shown in Fig. 4.6a. Initially, Freericks
and coworkers had followed Rozenberg’s approach of computing σ(ω) for the Bethe
lattice by application of the expression (4.73) derived for the hc lattice (Chung and

23For a discussion of the importance of surface effects, see Sec. 2.2.
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Freericks, 1998b). After noting a numerical violation of the corresponding f -sum rule
(4.44), i.e., a lack of proportionality between the integral over σ(ω) and the full kinetic
energy, they realized the need for a careful treatment of the linear response formalism
applicable to the Bethe lattice. They proposed (Chung and Freericks, 1998a)24 an
application of (4.73), but using a DOS multiplied by a nontrivial (squared) Fermi
velocity prefactor of the form 〈v2

kx
〉(ε) = 4 − ε2, i.e., ρ̃(ε) = (4 − ε2)ρ(ε). This

prefactor vanishes at the band edges (at ε = ±2) as expected on general physical
grounds. Furthermore, the proportionality between the f -sum and the total kinetic
energy was seen to be reestablished, albeit with an unexpected prefactor 3. No
derivations were published; Freericks did, however, make a sketch of his treatment
available privately (Freericks, 2000) which forms the basis of our derivation given
below.

Let us first show analytically which sum rule obtains from using the hc decoupling
ρ̃xx(ε) = 〈v2

kx
〉ρ(ε) with ρ(ε) being the semi-elliptic Bethe DOS (and effectively con-

stant 〈v2
kx
〉). This is easily accomplished using the formalism developed in subsection

4.3.2,

ρ̃xx(ε) = 〈v2
kx
〉ρ(ε); ρ(ε) =

1

2π

√
4− ε2

⇒ d

dε
ρ̃xx(ε) = −〈v2

kx
〉 ε
2π

(
4− ε2

)−1/2
(4.96)

⇒
∞∫

0

dω σxx(ω) = 〈v2
kx
〉σ0

4
〈 −ε
4− ε2 〉 . (4.97)

Evidently, the frequency sum is indeed not proportional to the expectation value of
the kinetic energy. This fact is not surprising since the proportionality of the f -sum
to the kinetic energy is very specific to the hc case as shown in subsection 4.3.1.

The central assumption made by Freericks is that kinetic energy eigenstates can
be written in the following form,25

|ε〉 =
∑

x

(γε)
x
∑

αx

|x, αx〉 . (4.98)

Here, the integer x counts the level number (i.e., is the vertical coordinate in Fig. 4.6a)
and αx is an intra-level coordinate, i.e., labels lattice sites within level x. The latter
is written with index x since the set of values that the intra-level coordinate can take
depends on x for Z > 2. The factor26 γε takes the role of a phase shift between levels
although, as we will see, its absolute value does not in general equal 1. An expression
for γε in terms of ε is obtained from the eigenvalue equation for the kinetic energy.

24Note that this reference is the published version of the preprint (Chung and Freericks, 1998b).
25Our reproduction of the derivation differs considerably in form from the sketch made available

to us (Freericks, 2000). In particular, we found it necessary to introduce indices within the planes.
Unless noted, however, the treatments are equivalent.

26In the following, we will also write γx
ε ≡ (γε)

x where x is still an exponent rather than an index.
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For the kinetic energy, we can write

T̂ = −2t
∑

y

∑

αy

ĉ†y,αy

(
ĉy−1,f(αy) +

Z−1∑

i=1

ĉy+1,g(αy ,i)

)
, (4.99)

where f(αy) maps onto the intra-level coordinate of the “root” (on level y − 1) of
site (y, αy) . Conversely, g(αy, i) maps onto the intra-level coordinate of one of the
(Z−1) “children” on the higher level of the same site.27 We obtain for the eigenvalue
equation

T̂ |ε〉 = −2t
∑

x

(
γx−1
ε + (Z − 1)γx+1

ε

)∑

αx

|x, αx〉 (4.100)

= −2t
(
γ−1
ε + (Z − 1)γε

)
|ε〉 . (4.101)

By definition, the coefficient if front of |ε〉 must equal ε; inverting this equation, we
obtain

γε =
−ε±

√

ε2 − 4(Z − 1)t2

2(Z − 1)t
. (4.102)

Expressing the current operator28 in a form analogous to the kinetic energy,

̂ = iet
∑

y

∑

αy

ĉ†y,αy

(
− ĉy−1,f(αy) +

Z−1∑

i=1

ĉy+1,g(αy ,i)

)
, (4.103)

the associated eigenvalue equation reads,

̂|ε〉 = iet
(
− γ−1

ε + (Z − 1)γε
)
|ε〉 (4.104)

= ±e
√

4(Z − 1)t2 − ε2|ε〉 . (4.105)

The requirement that the eigenvalues of ̂ have to be real fixes the band edges,
|ε| ≤ 2t

√
Z − 1.29 The square root in (4.105) is to be interpreted as 〈vkx

〉(ε) which
implies that in the limit of Z →∞,

ρ̃xx(ε) = (4t∗2 − ε2)ρ(ε) . (4.106)

Applying the general expression (2.24) specifically for the semi-elliptic DOS (for t∗ =
1) then leads to

ρ̃xx(ε) =
1

2π

(
4− ε2

)3/2
(4.107)

∞∫

0

dω σxx(ω) =
σ0

4
〈 ρ̃

′
xx(ε)

ρ(ε)
〉 =

σ0

4
〈−3ε〉 , (4.108)

27More formally, we can demand that the mapping (y, αy, i)→ (y+ 1, αy+1) ≡ (y+ 1, g(αy, i)) is
injective and that f(g(αy, i)) = αy for all y, αy, and i ∈ {1, . . . , Z − 1}.

28Since no volume can be defined, we consider here the full current instead of the current density.
Furthermore, we set a = 1 and ~ = 1.

29Freericks links the restriction of ε to be within the band edges to the requirement that the states
are extended. See also the discussion below.
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where for the sum rule we have used (4.87). Since only one direction is well defined, we
can identify σxx(ω) with Tr

{
σxx(ω)

}
and find that the corresponding sum rule exceeds

the “usual” hypercubic case by a factor of 3. While, in view of the preceding section,
we are not surprised to find different sum rules (in terms of specific expectation
values) for different lattices, one might view the appearance of the factor of 3 as a
clue to some inconsistency in this particular case.

We will show in the following that the preceding derivation (4.98) - (4.108) is
incorrect for the Bethe lattice and instead applies to some effective one-dimensional
lattice. In order to establish operator identities or, in this case, that the eigenvalue of
the current operator can always be expressed in terms of the eigenvalue of the kinetic
energy [cf. (4.104)], one needs to demonstrate such a relationship for a complete basis.
However, the class of wave functions represented by the ansatz (4.98) is not complete
for Z > 2. This is easily seen from the fact that, according to this ansatz, the
occupation is constant within each level, 〈n̂x,αx

〉 = 〈n̂x,α′
x
〉 while each single hopping

process induces an intraplanar variation of the occupancy.30 Therefore, Freericks’
derivation at best applies to some subspace of the full Hilbert space only.31 Let us
characterize this reduced Hilbert space by finding an orthogonal basis for a section
of the Bethe lattice with an arbitrary but finite number L of levels. Setting

γε =
γ̃ε√
Z − 1

, (4.109)

we can write

〈ε|ε′〉 = N0

L∑

x=1

(Z − 1)xγxε γ
∗
ε′
x = N0

L∑

x=1

(γ̃ε γ̃
∗
ε′)

x (4.110)

= N0

L∑

x=1

ei(ϕε−ϕε′ )x . (4.111)

Here, N0 is the number of sites in level 0. In (4.111), we have used the fact that γ̃ε
is of unit absolute value for physical values of ε and have introduced its (real) phase
ϕε = arg(γ̃ε). For orthogonality, we have to require that the phases differ by integer
multiples of 2π/L which fixes the allowed values of γ̃l ≡ γ̃εl up to some arbitrary
phase chosen as zero,

γ̃l = e2πil/L; l ∈ {0, ..., L− 1} (4.112)

εl = −2t
√
Z − 1 cos

(2πl

L

)
. (4.113)

30While for any energy eigenstate the total occupation of each level is also constant (which is
clearly unphysical since it implies infinite occupation per lattice site for level number x → −∞),
the total occupancy per level can be adjusted independently for each level by choosing a suitable
linear combination of eigenfunctions (4.98).

31Note that the situation is completely different for wave functions than it is for Green functions.
In the latter case, the position where a particle is destroyed singles out a central site. The distance
from this site then uniquely defines levels and bond directions (for the unperturbed Hamiltonian).
In contrast, the Hilbert space defined in terms of wave functions has to restore the equivalence of
all lattice sites.
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With these settings, we have 〈εl|εl′〉 = N0Lδll′ . Up to the prefactor
√
Z − 1, (4.113)

is identical to an enumeration of states of the usual d = 1 lattice. Therefore, in the
limit L→∞, the density of states corresponding to the selected set of wave function
reads,32

ρ(ε) =
1

π
√

4t2(Z − 1)− ε2
Z→∞−→ 1

π
√

4t∗2 − ε2
(4.114)

Setting t∗ = 1, we obtain for the sum rule,

ρ̃xx(ε) = (4− ε2)ρ(ε); ρ(ε) =
1

π
√

4− ε2
⇒ d

dε
ρ̃xx(ε) = − ε

π

(
4− ε2

)−1/2
(4.115)

⇒
∞∫

0

dω σxx(ω) =
σ0

4
〈−ε〉 , (4.116)

as for the hypercubic lattice. So the factor of 3 was indeed incorrect as the derivation
really applied to some effective one-dimensional model.33 In our view, the inadvertent
reduction of the Hilbert space cannot be healed within Freerick’s approach since this
would involve considering arbitrary level ordering of the lattice sites for a given
energy. Even if such an enumeration was possible it seems extremely unlikely that
linear combinations can be found which are also eigenstates of the current operator.

Finally, we note that Millis and collaborators also derived an expression for
σ(ω) for the Bethe lattice by assuming that the “usual” hc sum rule (4.44) holds
(Chattopadhyay, Millis, and Das Sarma, 2000). Consequently, their result agrees
with (4.107) and (4.108) up to a factor of 1/3. Since this assumption is also unjus-
tified, there is at present no valid indication at all that an expression of the form
〈v2

kx
〉(ε) ∝ (4 − ε2) can be derived for any layout of the Bethe lattice or that the

treelike layout of the Bethe lattice (cf. Fig. 4.6a) is useful for deriving an expression
for 〈v2

kx
〉(ε). Therefore, we have to turn to other approaches which will be discussed

in the following subsections.

4.4.2 Single-Chain Stacked Bethe Lattice

In this section, we will use an alternative real-space picture where the Bethe lattice is
laid out in stacked equivalent plains which are connected by a single chain of bonds
as shown in Fig. 4.6c. Once the layout is chosen, the derivation by Logan and his
student Stumpf (1999), which we will discuss in the next paragraph, corresponds to a
straightforward application of a general real-space expression for the (paramagnetic
contribution to the) optical conductivity in high dimensions (Metzner, Schmit, and
Vollhardt, 1992). The main virtue of this method is that it leaves the topology of the
Bethe lattice intact and is therefore as specific to the Bethe lattice as possible. Its

32Note that this expression cannot be correct for any lattice model with hopping parameter t for
Z 6= 2 since as shown in Sec. 2.2 the variance for NN hopping must always equal Zt2 while from
(4.114) it computes to 2(Z − 1)t2.

33Interestingly, the total expression for ρ̃xx(ε) equals two times the Bethe DOS ρ(ε). So an
application of the results of this subsection as an approximation would imply using 〈v2

kx
〉(ε) = 4

which up to constant prefactors is equivalent to using the hc formula for the Bethe lattice.



4.4. Optical Conductivity for the Bethe Lattice 205

Figure 4.7: Schematic representation of hopping processes for a lattice consisting of stacked
hyperplanes connected by a single chain of bonds in current direction (e.g., Stumpf’s view
on the Bethe lattice). Contributions to the current operator are restricted to this chain
(dashed lines) while contributions to the kinetic energy (full lines) arise both from hopping
along the chain and within the hyperplanes.

main characteristics are that it describes only incoherent transport and that the total
current is not extensive.34 The lack of coherence is clearly a shortcoming with respect
to a realistic description of Fermi liquids, but very much in line with properties of the
unperturbed Bethe lattice (i.e., with A = 0). In fact, we have pointed out already in
subsection 2.2.2 that all lattices with Bethe DOS have an effective mean free path of
one lattice spacing. As we will see in this section, the same statement can be made
about all lattices to which the expression for σ(ω) resulting from Stumpf’s treatment
applies. Specifically, the optical conductivity of periodically stacked lattices where
the bonds in current direction are fully disordered agrees with Stumpf’s result except
that it is extensive.

Let us consider a model as depicted in Fig. 4.7, where a current can flow in
x direction along a single chain of bonds which connect central sites of equivalent
sublattices. The remaining hopping bonds of each sublattice are confined in stacked
hyperplanes orthogonal to the current direction. For full correspondence to Fig. 4.6,
each sublattice would have to consist of a Bethe lattice with two bonds removed at
the central site (since these are assumed to connect neighboring planes); for Z =∞,
however, the removal of a finite number of bonds per site is irrelevant so that each
hyperplane can be regarded as a full Bethe lattice. More generally, any DMFT lattice
type can be assumed to be replicated on each hyperplane with the same resulting
expressions for the conductivity σxx(ω) in stacking direction.

Labeling sites by the linear coordinate x and some intraplanar coordinate α, where
α = 0 denotes the central sites, the paramagnetic current operator (4.47) takes the
form

̂x =
ieta

~

∑

i,σ

(

ĉ 0†
i+1,σ ĉ

0

i,σ − ĉ 0†
i,σ ĉ

0

i+1,σ

)

. (4.117)

34The latter directly follows from the restriction of the current to the single chain of bonds lying
along the current direction.
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Figure 4.8: Diagrammatic representation of terms of the form (4.119) entering the com-
putation of the optical conductivity: a) Leading contribution scaling as O(1/Z). b) and
c) subleading contributions being O(1/Z2). d) Contributions which include loops do not
exist for the Bethe lattice (but are among the leading diagrams for regular lattices).

Here, the upper index 0 of operators stands for α = 0, the central site within a
sublattice. Consequently, the paramagnetic contribution to the optical conductivity

σxx(ω) = − e2a2t2

i~2(ω + i0+)N

∑

i,j,σ

〈〈ĉ 0†
i+1,σ ĉ

0

i,σ − ĉ 0†
i,σ ĉ

0

i+1,σ, ĉ
0†
j+1,σ ĉ

0

j,σ − ĉ 0†
j,σ ĉ

0

j+1,σ 〉〉(ω + i0+)

(4.118)
contains terms of the form (with suppressed ω-dependence)

Γijkm := 〈〈ĉ 0†
iσ ĉ

0

kσ, ĉ
0†
mσ ĉ

0

jσ 〉〉δi,k±1δm,j±1 . (4.119)

In a diagrammatic evaluation of the corresponding real-time correlation function (cf.
Sec. D.2), the exponentials carrying the time dependence in the Heisenberg picture
introduce additional paths between pairs of sites; the resulting full diagram only
contributes to the implicit trace when it represents a closed path. A selection of such
diagrams is shown in Fig. 4.8 where the current paths35 (dashed lines) are closed by
time-dependent propagators (solid lines). In the DMFT formalism, each path of taxi-
cab length l carries a factor of Z−l/2 so that the diagrams in Fig. 4.8a, Fig. 4.8b, and
Fig. 4.8c, have prefactors of 1/Z, 1/Z2, and 1/Z2, respectively. Due to the absence
of loops, the additional powers of 1/Z introduced by nonlocal propagators cannot
be compensated by factors of Z arising from a sum over equivalent diagrams. Thus,
up to a shift along the current direction, diagram Fig. 4.8a is the only (leading)
contribution for Z → ∞. For comparison, a diagram typical of regular lattices is
shown in Fig. 4.8d; such diagrams usually contribute in leading order Z/Z2, but do
not exist on the Bethe lattice. The two time-dependent propagators closing the path
do not interfere for Z → ∞ on any lattice (see subsection 4.4.4) which implies that

35In momentum representation, these “current vertices” contract to a pair of dots.



4.4. Optical Conductivity for the Bethe Lattice 207

the expectation values decouple and lead to a pair of single-particle Green functions,
i.e., to the usual bubble sum. In the specific case under consideration, i.e., without
loops, both Green functions become local, so that the conductivity reads

σxx(ω) =
πe2a2t2

~2

Lx
L

∑

σ

∞∫

−∞

dω′AAσ(ω
′)ABσ(ω

′ + ω)
nf(ω

′)− nf(ω
′ + ω)

ω
. (4.120)

Here, A(ω) denotes the full local spectral function, Lx the linear extent in current
direction, and L the number of sites for some finite part of the system. As indicated
by the sublattice indices A,B and spin index σ, the result is valid also in phases with
broken symmetry, i.e., in an antiferromagnetic phase. Note that (4.120) is not directly
dependent on the type of the underlying sublattice (confined in each hyperplane), not
even via a noninteracting DOS.36

The most striking feature of the present derivation and its result (4.120) is that
the dc conductivity always remains finite (or vanishes) in the paramagnetic phase,
even in the noninteracting limit. This follows from the fact that in the paramagnetic
phase, the local spectral function is bounded by the maximum of the noninteract-
ing DOS. For a symmetric DOS which is peaked at zero frequency, the integral in
(4.120) is therefore bounded by ρ2(0).37 Consequently, there is no qualitative differ-
ence between the conductivities for noninteracting and interacting systems: only the
energy eigenvalues of each pair of states determines its contribution to σxx(ω); the
associated momenta are unimportant. This behavior is in striking contrast to the
Bravais lattice case discussed in subsection 4.1.4 where the dc conductivity diverges
in the noninteracting limit. In this sense, (4.120) describes incoherent transport. As
we will show in subsection 4.5.1, the expression is generally valid within the DMFT
for k⊥-nonconserving hopping between planes.

Commutators and Loops

As discussed in subsection 4.1.4, the presence of optical absorption at finite frequen-
cies in the noninteracting limit implies that the paramagnetic current operator and
the kinetic energy do not commute. In the following, we will demonstrate that indeed
[Ĥ0, ̂] 6= 0 for the single-chain layout discussed in this subsection. For this purpose,
we focus first on a single contribution to the current operator and study separately
and in turn its commutator with kinetic energy contributions (anti)parallel or per-
pendicular to its direction. We will see that the former contributions vanish quite
generically (in absence of disorder) in summations along the current chains. In con-
trast, the latter contributions can only cancel in the presence of certain loops of
length four which do not exist on the Bethe lattice.

For a single hopping term contributing to the current operator, the commutator

36In subsection 4.5.1, we will present a unified treatment of incoherent and coherent transport
where k-sums and noninteracting DOSs reappear for the case of regular sublattices.

37In contrast, momentum-dependent spectral functions diverge in the noninteracting limit.
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a) b)

Figure 4.9: Commutator of kinetic energy (solid arrows) and one paramagnetic current
term (dashed arrow). a) Contributions from hopping along the current lead to on-site
terms and next-nearest neighbor hopping terms in the commutator (dotted arrows) vanish
in sums along the current chain. b) Perpendicular hopping induces NNN hopping terms
(dotted arrows) away from and towards the current chain (shaded).

[Ĥ0, ̂] contains terms from hopping in current direction,

∑

i

[

ĉ 0†
i ĉ

0

i+1, ĉ
0†
j ĉ

0

j+1

]

=
∑

i

[

ĉ 0†
i

(
δ 0

i+1,j − ĉ 0†
j ĉ

0

i+1

)
ĉj+1 − ĉ 0†

j ĉ
0

j+1 ĉ
0†
i ĉ

0

i+1

]

= ĉ 0†
j−1ĉ

0

j+1 −
∑

i

[

ĉ 0†
j ĉ

0†
i ĉ

0

j+1ĉ
0

i+1 + ĉ 0†
j ĉ

0

j+1 ĉ
0†
i ĉ

0

i+1

]

= ĉ 0†
j−1ĉ

0

j+1 − ĉ 0†
j ĉ

0

j+2 (4.121)

and from hopping opposite to the current direction,

∑

i

[

ĉ 0†
i+1ĉ

0

i , ĉ
0†
j ĉ

0

j+1

]

= ĉ 0†
j+1ĉ

0

j+1 − ĉ 0†
j ĉ

0

j . (4.122)

Both the generating and the generated terms for the parallel and antiparallel cases
are shown schematically in Fig. 4.9a. Evidently, they both cancel in a sum over the
full current,

∑

i,j

[

ĉ 0†
i ĉ

0

i+1, ĉ
0†
j ĉ

0

j+1

]

= 0 =
∑

i,j

[

ĉ 0†
i+1ĉ

0

i , ĉ
0†
j ĉ

0

j+1

]

. (4.123)

In contrast, hopping processes perpendicular to the current introduce “diagonal”
terms in the commutator as depicted in Fig. 4.9b,38

∑

i,α
α NN of 0

[

ĉα†
i ĉ 0

i , ĉ
0†
j ĉ

0

j+1

]

=
∑

α
α NN of 0

ĉα†
j ĉ 0

j+1 , (4.124)

which can only vanish in summations over parallelogram loops of length 4 which are
not present in the model under consideration. For the hypercubic case of a regular
lattice, the cancellation is diagrammatically represented in Fig. 4.10. Consequently,

38Within the current notation, also terms of the form ĉ 0†
i ĉ α

i contribute to the kinetic energy.
Fig. 4.9b shows a selection of both contributions.
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[K̂,̂ ]−→ +
+

−
−+ + +

Figure 4.10: Commutator of kinetic energy and paramagnetic current: in a hypercubic
lattice, contributions of the form Fig. 4.9b cancel in summations over square loops.
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Figure 4.11: a) Sums over parallelogram loops (solid lines, dashed lines) lead to a can-
cellation of all contributions of [K̂, ̂ ] in an fcc lattice. b) Nonvanishing full commutator
[K̂, ̂ ] (dotted arrows) for the Bethe lattice.

the existence of loops of length four as shown in Fig. 4.10 is a necessary condition
for the absence of absorption in the noninteracting limit. Note that with suitable
modifications (allowing for several current chains) the present discussion generally
applies to regular Bravais lattices.39 Then, the loops along which the commutator
cancels consist of pairs of parallel edges as indicated for the case of the fcc lattice
in Fig. 4.11a. Obviously, the properties of a Bravais lattice guarantee that each
pair of hopping bonds associated with a common lattice site can be closed to such
a parallelogram. Thus, the real-space argument leads to the same result for Bravais
lattices as the k-space derivation in subsection 4.1.4: the reduction of σ(ω) to a
Drude peak in the noninteracting limit.

In contrast, the failure of coherence in the present view on the Bethe lattice can
be unambiguously attributed to the nonvanishing terms in the commutator of kinetic
energy and current operator represented in Fig. 4.11b.

4.4.3 Periodically Stacked Lattices

In this subsection, we will leave behind approaches for computing σ(ω) strictly for
the Bethe lattice and instead discuss a very general concept which can be used for
establishing expressions for the conductivity for one particular current direction in
the limit of Z → ∞. While this method can be applied to any underlying lattice

39The restriction to lattices of the Bravais type is necessary; in fact, our argument correctly
implies that absorption at finite frequencies takes place for lattices with several atoms per unit cell
even in the noninteracting limit just like for the Bethe lattice.
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a) b)

Figure 4.12: Stacked lattices with a) NN hopping in stacking direction and b) simulta-
neous NN and NNN hopping, here shown for Bethe lattice hyperplanes with Z = 4. For
clarity, only a selection of bonds is shown in b).

or pseudolattice, it is important to note that it in general describes anisotropic (“c-
axis”) transport. The basic idea of the approach is that the influence of adding a
finite number of additional hopping bonds per site on the kinetic energy and on all
other local properties will scale to zero in the limit Z →∞. Thus, the unperturbed
Hamiltonian (i.e., without coupling to external fields) can be changed in order to
make the transport problem well-defined (or to redefine it), while leaving the local
DMFT problem unchanged.

The additional bonds are defined by extending the vector space in which the
original lattice lives40 by one extra dimension. Copies of the hyperplane (i.e., the
original vector space) can then be stacked along the new dimension, connecting sites
with the same intraplanar coordinates by hopping bonds. We will in the following
assume that the additional hopping matrix elements scale like 1/

√
Z so that their

contribution to the variance of the total kinetic energy is O(1/Z).41 This construc-
tion is illustrated in Fig. 4.12a for nearest-neighbor hopping in current direction x.
Obviously, the resulting lattice is periodic (at least) in this direction. Furthermore,
all lattice sites remain fully equivalent.42 Therefore, the component kx of the wave
vector is well-defined which makes the general results of the beginning of this section

40Since the Bethe lattice is a planar graph, it can be arranged in 2 dimensions. Within the present
approach, the particular layout within the plane and even the embedding dimension are irrelevant.

41While this assumption is most natural in the DMFT sense it suffices for the theory to apply that
the additional terms decay for Z → ∞. In fact, there is no compelling reason in this anisotropic
case that hopping terms in the anisotropy direction should have the same scaling law ∝ 1/Z as
those within the hyperplanes.

42Note the contrast to the alternative approaches discussed in subsection 4.4.1 and subsection
4.4.2 where the equivalence of lattice sites was broken by the assignment of level numbers to sites
or by the selection of current carrying bonds, respectively.
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applicable. For NN hopping in current direction, the conductivity is thus given by

Re σxx(ω) =
2πe2a2t2

~2

N

V

∞∫

−∞

dερ(ε)

∞∫

−∞

dω′Aε(ω
′)Aε(ω

′ + ω)
nf(ω

′)− nf(ω + ω′)

ω
,

(4.125)
which agrees with (4.73) for a uniform hopping amplitude t = t∗/

√
d. For the par-

ticular case of the stacked Bethe lattice, this fact was observed and used by Uhrig
and Vlaming (1993). Longer-range hopping in stacking direction as illustrated in
Fig. 4.12b only leads to a modified constant prefactor. For this general case, an
expression for σxx(ω) is found from (4.65) in conjunction with (4.75).

As verified by Uhrig and Vlaming (1993) within their locator formalism, the result-
ing sum rule for NN hopping in current direction is indeed of the form characteristic
for the hypercubic lattice [with σ0 = 2πe2N/(V ~

2) as defined in (4.67)],

∞∫

0

dω σxx(ω) = −σ0t
2a2

4
〈T̂x〉 . (4.126)

This observation is, however, not very useful in the DMFT context since the applica-
bility of (4.125) depended on the fact that 〈T̂x〉 is negligible with respect to the full
kinetic energy. Thus, (4.126) alone gives no relation between the frequency sum and
any expectation value surviving the DMFT limit. Using instead the general DMFT
f -sum rule (4.87), we obtain for the general stacked case,

∞∫

0

dω σxx(ω) =
σ0

4
〈

d
dε
ρ(ε)

ρ(ε)
〉

2π/ax∫

0

dkxv
2
kx
, (4.127)

where the integral equals t2a2 for NN hopping in current direction. Thus, we have not
only identified a form of the f -sum rule which is generally applicable for anisotropic
lattices in high dimensions, but also found an expression for the expectation value
of the kinetic energy in the stacking direction. For the particular case of the stacked
Bethe lattice with NN hopping, the sum rule reads [cf. (4.97)]

∞∫

0

dω σxx(ω) =
t2a2σ0

4
〈 −ε
4− ε2 〉 . (4.128)

4.4.4 Offdiagonal Disorder

In the DMFT limit, diagrammatic expressions for directional transport are always
dominated by diagrams with minimal extent in current direction. Specifically, for
lattices where all lattice sites are arranged in planes perpendicular to the current
and where the interplane contribution to the kinetic energy has zero weight for Z →
∞, the surviving diagrams are confined to two neighboring planes with only two
connections, the current vertices, between the planes as illustrated in Fig. 4.13: here
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a) b) c) d)

Figure 4.13: Diagrammatic contributions to the current-current correlation function (cf.
Fig. 4.8). Here, the vertical axis symbolizes all directions perpendicular to the current
direction (horizontal axis). In finite dimensions, contributions arise for a) parallel and b)
antiparallel current (dashed arrows) with arbitrary offset. In d → ∞, however, only the
antiparallel contribution survives with no offset in current direction, c)+d). The connecting
Green functions (solid arrows) are, then, restricted to two neighboring planes.

the horizontal axis is the current direction whereas the vertical axis represents all
other (perpendicular) directions. Diagrams as shown in Fig. 4.13a and Fig. 4.13b
which include sites at more than 2 planes are suppressed in high dimensions where
only diagrams like shown in Fig. 4.13c and Fig. 4.13d survive. The reason is that
each hopping in current direction contributes a factor that scales to zero in the DMFT
limit (and is proportional to 1/

√
Z in the isotropic case) while all other directions

are inequivalent by definition so that these factors cannot cancel from a sum over
equivalent diagrams. As a consequence, the time evolution paths (solid lines) between
the current vertices are each restricted to a separate hyperplane and cannot interfere
which implies that the full correlation function can be expressed in terms of a pair
of Green functions (Metzner et al., 1992). In more formal terms, when we label the
involved sites as A1 and A2 for one (hyper)plane and B1, B2 for the second plane
then the expectation value of the time-dependent current-current correlation function
decomposes in the following way:

〈e−iĤtc†A1
cB1

eiĤtc†B2
cA2
〉 = 〈e−iĤtcB1

eiĤtc†B2
cA2

e−iĤtc†A1
eiĤt〉 (4.129)

= 〈e−iĤtcB1
eiĤtc†B2

〉 〈cA2
e−iĤtc†A1

eiĤt〉 (4.130)

= GB1B2
(t)GA2A1

(−t) . (4.131)

Here, we have used the invariance of the implicit traces under ring permutations and
the time invariance of the Hamiltonian. Thus, this real-space argument implies a
re-derivation of the bubble formula (4.62) for σ(ω) in d → ∞. In contrast to the k-
space formulation presented in Sec. 4.3 for regular lattices, the real-space formulation
applies to arbitrary (pseudo-) lattices and even in the presence of disorder.

Full diagonal disorder is realized within the DMFT when all hopping matrix
elements are chosen independently from a random distribution with 〈tij〉 = 0 (cf.
subsection 2.2.2). Then, only diagrams which are self-retracing in real space have
finite expectation values. Taken together with the restriction to diagrams living
on two neighboring planes, this means that the current-current correlation function
becomes fully local, i.e., reduces to contributions of the form 〈〈ĉ†r ĉr+ex

, ĉ†r+ex
ĉr 〉〉 .
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Consequently, the optical conductivity can be expressed in terms of local spectral
functions (Dobrosavljević and Kotliar, 1993),

σxx(ω) =
πe2a2t2

~2

N

V

∑

σ

∞∫

−∞

dω′AAσ(ω
′)ABσ(ω

′ + ω)
nf(ω

′)− nf(ω
′ + ω)

ω
, (4.132)

where t2 = 〈t2r,r+ex
〉. Note that this expression essentially agrees with (4.120), but

does not contain the factor Lx/L which scales to zero in the thermodynamic limit.
We also observe that (4.132) is valid as long as the hopping terms in current direction
are fully disordered in the sense defined above regardless if the bonds perpendicular
to the current (i.e., within the hyperplanes) are ordered or disordered. This result
can, therefore, be applied in connection with any underlying lattice and is, then,
characteristic of the stacked disordered anisotropic model.

4.4.5 General Dispersion Method

In the preceding subsections, we have seen that all previous approaches of defining
and computing an optical conductivity compatible with DMFT calculations for a
semi-elliptic DOS had an inherently anisotropic character. Using the general formal-
ism developed in Sec. 2.3 and applied to the Bethe DOS in Sec. 2.4, we can here
for the first time consider the isotropic case. We remind the reader that in the gen-
eral dispersion formalism hopping matrix elements only depend on taxi-cab distance
D which, for d → ∞, leads to the dispersion εk =

∑∞
D=1 HeD(εhc

k ) t∗D/
√
D!, where

HeD(x) is the Hermite polynomial of order D and εhc
k is the dispersion of the hyper-

cubic lattice with NN hopping [cf. (2.52)]. Due to the completeness of the Hermite
polynomials, an arbitrary transformation function f with εk = f(εhc

k ) can be real-
ized by an appropriate choice of scaled hopping matrix elements t∗D. In particular,
any bounded function f leads to corresponding band edges in the resulting DOS.
Using (2.61), a suitable (monotonous) transformation function f may be determined
for an arbitrary “target” DOS which then allows for the computation of transport
properties, e.g., via (2.63). Furthermore, the hopping matrix elements defining the
corresponding microscopic model can be computed according to (2.55).

For the “redefined Bethe lattice”, a regular isotropic hc lattice with extended
hopping along the diagonals and a semi-elliptic DOS, we have from (2.70),

ρ̃(ε) =
1

2
√

1− ε2/4
exp



−2

(

erf−1
(ε
√

1− ε2/4 + 2 sin−1(ε/2)

π

)

)2


 (4.133)

which defines σxx(ω) in conjunction with the general expression (4.65) and is shown in
Fig. 4.14. Also shown in the figure is the function ρ̃′(ε)/ρ(ε) which determines the sum
rule (4.95). It is a straightforward but lengthy exercise to derive the explicit analytic
expression from the chain rule. Let us, instead, only point out that it approaches
−πε/2 at ε ≈ 0, but clearly deviates from this asymptotic form near the band edges.
Thus, the f -sum cannot be proportional to the kinetic energy in any limit. The
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Figure 4.14: DMFT transport characteristics of redefined Bethe lattice in d =∞: for this
isotropic, regular lattice, the optical conductivity is well defined by (4.65) using the input
ρ̃(ε) (left) while its semi-elliptic DOS (top right) guarantees local single-particle properties
to be identical to that of the Bethe lattice. The f -sum (4.87) can be computed from mea-
surements of the generalized momentum distribution function nε using the input ρ̃′(ε)/ρ(ε)
(bottom right). At small frequencies, the latter function deviates from the hc form −ε only
quantitatively by a factor π/2 while the decay at the band edges marks a very important
qualitative difference.

only similarity one can expect to the hc case is that, for small U and T , changes
in the frequency sum will be proportional to changes in the kinetic energy. Let us
emphasize that the information collected in Fig. 4.14 gives a complete description of
the lattice within the DMFT with respect to local and transport properties. There
are several possible choices for the transport input ρ̃(ε) consistent with the same
DOS (which by itself completely determines local properties within the DMFT).
The particular choice (4.133) depicted here is the most natural since it is consistent
with isotropic hopping matrix elements and since the noninteracting energy increases
monotonously from the center of the Brillouin zone. Furthermore, the scaled hopping
matrix elements decay very fast for this choice, cf. Table 2.2. Thus, we have found
a minimal extension of the formalism developed for the hypercubic lattice which is
consistent with a semi-elliptic “Bethe” DOS.

As discussed in chapter 2, one should check whenever possible whether results
obtained for d =∞ survive as a reasonable approximation in finite (and not too high)
dimensions. Within the framework of the general dispersion method and, thus, for
the model at hand, finite dimensionality d implies a finite maximal hopping distance
Dmax ≤ d; the selection of hopping matrix elements even relied on Dmax ¿ d. We
have already demonstrated in subsection 2.4.2 and subsection 2.4.3 that the effects
of a truncation of the hopping range and of finite dimensionality on the DOS, i.e.,
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Figure 4.15: DMFT transport characteristics of the hc lattice with 3rd NN hopping (anal-
ogous to Fig. 4.14). ρ̃(ε) changes much less with dimension d that the DOS, in particular
for d ≥ 4.

on local properties, are small even for d, Dmax . 10. Thus, the model relies much
less on extremely high dimensionality than, e.g., the d =∞ fcc lattice. We will now
extend the discussion to transport related properties.

In Fig. 4.15, the analogue of Fig. 4.14 is shown for the redefined Bethe lattice with
the hopping range truncated at Dmax = 3 and for a range of dimensions 3 ≤ d ≤ 100.
Evidently, ρ̃(ε), the lattice input for σ(ω), is hardly affected by a change of dimension,
in particular for d > 3. The differences are even much smaller for ρ̃(ε) than for the
DOS ρ(ε) since Van-Hove singularities in the DOS for some energy ε∗ are cancelled by
a corresponding dip in the average squared Fermi velocity 〈|vk|2〉(ε∗). As we will see
below, this behavior is very general so that results for σ(ω) of a local theory in finite
dimensions will depend on d predominantly via A(ω), the interacting DOS, and only
very little via ρ̃(ε). From comparing the main panels of Fig. 4.14 and Fig. 4.15, we
also see that the impact of the truncation to Dmax = 3, i.e., only two nonvanishing
scaled hopping matrix elements, is typically much smaller than 10%. As seen in the
lower right part of Fig. 4.15, the function ρ̃′(ε)/ρ(ε) entering the f -sum rule (4.95)
converges fast for d > 3; the spikes near the band edges are due to numerical errors.
With the inclusion of 5th-nearest-neighbor hopping, effects of finite dimensionality
(for d ≥ 5) on ρ̃(ε) become almost invisible as seen in Fig. 4.16. Also the effect of
truncation is further reduced.

In conclusion, the results of this subsection demonstrate that the transport prop-
erties derived for the redefined Bethe lattice within the general dispersion formalism
for d = ∞ are not specific to very high dimensions or to infinite hopping range. In-
stead, a local theory of transport, i.e., usage of a local self-energy and of the bubble
approximation, applied in finite dimensions for models with similar hopping elements
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Figure 4.16: DMFT transport characteristics of hc lattice with 5th NN hopping (analogous
to Fig. 4.14). ρ̃(ε) is practically independent of dimension.

leads to similar expressions for σ(ω) and would, thus, also lead to similar results. In
this sense, the final numerical results which we will present in Sec. 4.6 are not spe-
cific to the limit d = ∞, but apply at least qualitatively also for a local theory of
conductivity in finite d, as long as the noninteracting DOS is symmetric and roughly
semi-elliptic.

4.5 Generalizations

In the previous section, we have focused on the question of how to define and compute
σ(ω) in a way consistent with DMFT calculations for a semi-elliptic noninteracting
DOS and within the paramagnetic phase. Before showing numerical results based
on these studies in the next subsection, we use this section to present generalizing
concepts. In subsection 4.5.1, we discuss various cases of stacked lattices which lead to
various degrees of coherence in the transport along the stacking direction. Properties
entering a local theory of σ(ω) in finite dimensions are collected for various lattice
types in subsection 4.5.2. Finally, the effect of frustration on transport is studied
analytically using the t − t′ lattice, i.e., a hc lattice with NN and NNN hopping in
subsection 4.5.3.

4.5.1 Coherent versus Incoherent Transport in High Dimen-
sions

As discussed in subsection 4.4.4, diagrammatic contributions to the optical conductiv-
ity along a symmetry direction generically only involve two neighboring hyperplanes.
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Therefore, the Green functions appearing in the bubble formula for σ(ω) are local in
the current direction. Let us for the moment specialize in the general stacked case
where the hyperplanes are connected by nearest-neighbor bonds in current direction
which is assumed to be perpendicular to the hyperplanes. If we consider the homo-
geneous case and denote the real space Green function connecting site r1 and r2 as
Gr2−r1

(ω), the resulting expression contributing to the conductivity is of the form

∑

r⊥

G(0,r⊥)(ω) G(0,−r⊥)(ω
′) . (4.134)

The important point is that the Green functions are local in current direction; r⊥
is the perpendicular component of r. If the hyperplanes are regular lattices, this
translates in Fourier space into a contribution

∑

k

∑

k′

Gk(ω)Gk′(ω′) δ(k⊥ − k′
⊥) . (4.135)

This simple form applies to the hypercubic lattice and all “full” stacked lattices,
where each lattice site is connected to neighboring sites by bonds in current direction.
Compared with the finite-dimensional case where the bubble summation would have
to include diagrams as shown in Fig. 4.13c and which would give rise to the full δ-
function δ(k−k′), the restriction of the δ-function to perpendicular directions might
already be viewed as a reduction of coherence. Obviously the fully incoherent case is
realized when there is only a single chain of links in current direction as discussed in
subsection 4.4.2 or if the hopping in current direction is fully disordered as discussed
in subsection 4.4.4: in both cases, the δ-function is replaced by unity.

The main point of this subsection is that the degree of coherence in k⊥ may be
tuned for an anisotropic model by attaching bonds in current direction only to a
sublattice of sites within each hyperplane (with the extreme cases where sublattice
and full lattice within the hyperplane are identical or when only a single site per plane
is connected). For example, when every second site (i.e., any site with coordinates r
for which (−1)||r⊥|| = 1) is connected, the transport is coherent up to the AF wave
vector which leads to a contribution43

∑

k

∑

k′

Gk(ω)Gk′(ω′)
1

2

(
δ(k⊥ − k′

⊥) + δ(k⊥ − k′
⊥ −Q⊥)

)
. (4.136)

Finally, for a hc lattice (with arbitrary hopping range in the perpendicular direction)
where every nth

α site in direction α is part of the “current sublattice”, the k summation
reads

∑

k

∑

k′

Gk(ω)Gk′(ω′)
d∏

α=2

(

1

nα

nα−1∑

l=0

δ(kα − k′α −
l

nα

2π

aα
)

)

. (4.137)

Here, aα is the lattice spacing in direction α. The completely incoherent case is
recovered for nα →∞ when all δ-functions approach unity.
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a) b) c) d)

Figure 4.17: a) For stacked lattices with only one current chain (here in horizontal di-
rection), the current-current correlation function reduces to its (antiparallel) on-bond part;
the Green functions become local. b) For stacked lattices with interplane connections only
for every second site, the connecting Green functions (solid arrows) are diagonal in sublat-
tice index α ∈ {A,B}. c)+d) Generalized stacked lattices with additional hopping along
diagonals (see text).

A complementary view is taken in Fig. 4.17. While the completely incoherent
case with a single link in current direction leads to diagrams involving only local
Green functions as shown in Fig. 4.17a, the case where current bonds touch every
second site implies diagrams where all Green functions are local with respect to the
sublattice index as shown in Fig. 4.17b. Thus, the lack of coherence with respect to
Q as demonstrated in (4.136) translates into a locality of the Green functions with
respect to the sublattice index.

In the more general case that current may also flow along diagonals, the two Green
functions do no longer only connect equivalent pairs of sites so that nontrivial factors
appear in the momentum summation. For example, NNN bonds imply diagrams as
shown in Fig. 4.17c which lead to contributions of the form

2t‖ t
′
‖
∑

k

∑

k′

Gk(ω)Gk′(ω′)
(∑

α

cos(kα)
)

δ(k⊥ − k′
⊥) (4.138)

and diagrams as shown in Fig. 4.17d with contributions44

4t′2‖
∑

k

∑

k′

Gk(ω)Gk′(ω′)
(∑

α

cos(kα)
)(∑

α′

cos(kα′)
)

δ(k⊥ − k′
⊥) . (4.139)

Here, t‖ and t′‖ denote hopping matrix elements which contribute to the current

(and may differ from matrix elements for transport within the planes). Using these
and analogous considerations it is easily possible to derive expressions for σ(ω) for
arbitrary stacked versions of arbitrary underlying regular lattices. One can even
carry out the momentum sums and, thus, arrive at expressions ρ̃xx(ε) for any such
combination. As one example, we remark that pure fcc-like hopping between planes as

43Note that this form immediately generalizes to the case of stacked AF planes (both with FM
or AF order in current direction).

44It is easy to check that the special case α = α′ is properly accounted for in this equation. Indeed
the terms 2 cos(2kα) (corresponding to the actual diagram shown in Fig. 4.17d) and 2 (corresponding
to parallel current vertices) sum up to 4 cos2(kα).
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Figure 4.18: DMFT transport characteristics of the hypercubic (hc) lattice with NN
hopping (cf. Fig. 4.14). The approach of the limiting Gaussian form (for d → ∞) is much
faster for ρ̃(ε) than for the DOS ρ(ε). The exact relation ρ̃′(ε)/ρ(ε) = −ε implies the
proportionality of the f -sum to the kinetic energy.

described by (4.139) leads to v2
k,x = 2dt′‖

2εhck
2
. If the hyperplanes are, e.g., hypercubic,

we get 〈v2
k,x〉(ε) = 2dt′‖

2ε2. In contrast, if the hyperplanes are also of the fcc-type

with t′⊥ = t′‖ = t′∗√
2d(d−1)

, the resulting expression is 〈v2
k,x〉(ε) = 2 t

′∗2

d
(1 +

√
2

t′∗
ε). In

the latter case we find that the squared Fermi velocity vanishes at the band edge as
always for isotropic systems.

4.5.2 Optical Conductivity in Finite Dimensions

In this subsection we continue the discussion of transport related lattice properties in
finite dimensions for a series of commonly treated lattice types. With the exception
of the dimension-independent analytic forms for ρ̃′(ε)/ρ(ε) available for the hc and
fcc cases, all curves have been obtained by Monte Carlo sampling of the appropriate
k-space expressions. Apart from possible uses of this data as input for computations
of σ(ω) in a local theory in finite dimensions, the study is also useful as support
for the results of the general-dispersion method which may be used as a black-box
algorithm for generating ρ̃(ε) from the noninteracting DOS ρ(ε) alone.

Fig. 4.18 shows that ρ̃(ε) converges much faster to its Gaussian d =∞ form than
the DOS on the hc lattice. This is possible since van-Hove singularities appearing in
the DOS are cancelled by corresponding dips in the squared Fermi velocity. As visu-
alized in Fig. 4.19a, the Fermi velocity becomes more and more effectively constant
and approaches unity for d → ∞. In Fig. 4.19b corresponding curves are shown for
the fcc lattice which approach a tilted straight line vanishing at the band edge for
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Figure 4.20: DMFT transport characteristics of fcc lattice with NN hopping (cf. Fig. 4.14).
As in the hc case, the f -sum is proportional to the kinetic energy; here, ρ̃′(ε)/ρ(ε) = −2ε.

d→∞. In particular, neither the finite-dimensional nor the limiting forms are con-
stant. This fact which is clearly important for quantitative studies of the influence
of frustration on transport properties was overlooked in a recent publication (Merino
and McKenzie, 2000) as we will discuss in the next subsection. In Fig. 4.20, the f -sum
rule is still seen to be proportional to the kinetic energy, but with an extra factor of 2
compared to the hc case. This proportionality is lost in the simultaneous presence of
hopping terms to nearest and next-nearest neighbors as studied in Fig. 4.21. Here,
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Figure 4.21: DMFT transport characteristics of the t − t′ hc lattice with NN and NNN
hopping (a∗ = −0.25). In contrast to Fig. 4.18 and Fig. 4.20, ρ̃′(ε)/ρ(ε) is no longer
proportional to the kinetic energy ε.
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Figure 4.22: Dimensional dependence of DMFT transport characteristics of the hc lattice
a) with only NN hopping and b) with both NN and NNN hopping (a∗ = −0.25).
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Figure 4.23: DMFT transport characteristics of the hyperdiamond lattice.

ρ̃′(ε)/ρ(ε) acquires a nontrivial shape the limiting form of which will be derived in the
next subsection. Again, the deviations of ρ̃(ε) and of ρ̃′(ε)/ρ(ε) in finite dimensions
from the asymptotic form (for d → ∞) are seen to be small. This fact is further
illustrated for ρ̃(ε) in Fig. 4.22a and Fig. 4.22b, where the d-dimensional results have
been divided by the asymptotic results, for the hc lattice with only NN hopping and
for the t-t’ lattice with a∗ = −0.25, respectively.

As a final example, Fig. 4.23 shows results for the hyperdiamond lattice which is
a semimetal at half filling (cf. App. B). At the pseudogap, the function ρ̃′(ε)/ρ(ε)
entering the f -sum rule is not even continuous.

4.5.3 Impact of Frustration by t − t′ Hopping

Throughout large parts of this thesis we have studied models with a symmetric DOS.
While this is a convenient special case it is certainly not generic. As discussed in sub-
section 2.1.3, true magnetic frustration which is an essential microscopic ingredient
for models with nontrivial low-temperature phases is generically associated with an
asymmetry of the DOS. Furthermore, for extensions of the hc lattice, it is associated
with even-range hopping (rather than only odd-range hopping). Thus, at least in fi-
nite dimensions, the hc lattice with nearest neighbor (NN) and next-nearest neighbor
(NNN) hopping is the prototype lattice for studying magnetic frustration.

Our interest for performing actual calculations was triggered by a recent DMFT
paper on the impact of frustration on the optical conductivity, on the dc Hall Resis-
tance, and on the thermopower of correlated electron systems (Merino and McKen-
zie, 2000). In this work, the expressions valid for the transport properties of the hc
lattice were used also in the case of finite frustration a∗ = 0.1 and a∗ = 0.3.45 We

45In the publication, the authors explicitly point out that this simplification is used “in order
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will here derive the correct expressions, i.e., perform the necessary momentum sums
and compare the results to an evaluation of the hc expressions.

In the low-frequency limit of the homogeneous phase, the transverse conductivity
reduces to (Shastry, Shraiman, and Singh, 1993; Merino and McKenzie, 2000)46

σxy = σH
0

∞∫

−∞

dω
∂nf (ω)

∂ω

1

N

∑

k

(∂εk
∂kx

)2∂2εk
∂k2

y

A3
εk

(ω) . (4.140)

Here, σH
0 = 4π2|e|3aB/3~

2 and B is the magnetic field in z direction. The spectral
function Aεk(ω) depends on momentum k only via the free dispersion εk. The dc
Hall coefficient

RH =
σxy

Bσ2
xx(ω = 0)

(4.141)

follows from (4.140) and the limit ω → 0 of (4.65). The thermopower is given by
the expression (Schweitzer and Czycholl, 1991; Pruschke, Jarrell, and Freericks, 1995;
Merino and McKenzie, 2000)

S = − kB
|e|T

L12

L11

(4.142)

where the transport integrals reduce for d→∞ to47

Lij = −
∞∫

−∞

dω
∂nf (ω)

∂ω

[ 2

N

∑

k

(∂εk
∂kx

)2
A2
εk

(ω)
]i

ωj−1 (4.143)

In order to perform the sums over momenta, we will use the fact that the dispersion
of the t− t′ lattice may be expressed in terms of the dispersion εhc

k of the hypercubic
lattice with unit scaled hopping amplitude t∗ = 1,

ε(k, t∗, a∗) ≡ εk = t∗εhc
k +

a∗t∗√
2

(

1−
(
εhc
k

)2
)

≡ f(εhc
k ) . (4.144)

Consequently, we may write

vk,x ≡
∂εk
∂kx

= t∗
(
1−
√

2 a∗εhc
k

)∂εhc
k

∂kx
(4.145)

where ∂εhc
k /∂kx =

√
2
d
sin(kx). Averaging over kx, this yields for the squared Fermi

velocity

〈v2
k,x〉(ε) =

t∗2

d

(

1−
√

2a∗ε̃
)2
∣
∣
∣
∣
ε=f(ε̃)

(4.146)

=
1 + 2a∗2 − 2

√
2a∗
√

1 + a∗2ε

1 + a∗2
. (4.147)

to avoid the cumbersome sums over momentum”. They claim it to be justified by their focus “on
many-body effects and not on how different band structures may change the results slightly”.

46In finite dimensions, the second derivative in x direction is supplemented by a term

−
(

∂εk

∂ky

)2 ∂2εk

∂kx∂ky
(which carries an additional factor 1/d and, therefore, vanishes for d→∞).

47Note that this expression is only approximate since it does not take contributions due to the
flow of doubly occupied sites into account (Georges et al., 1996).
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Figure 4.24: DMFT transport characteristics of the t− t′ lattice: a) For finite frustration,
the squared Fermi velocity 〈|vk|2〉(ε) (thick lines) is not constant, but vanishes linearly at

the band edge of the noninteracting DOS (thin lines). b) d〈 ∂2εk
∂k2

x
〉(ε) = ρ̃′(ε)/ρ(ε) needed

for computing the Hall conductivity and the f -sum. Deviations from the linear hc form
(a∗ = 0) are most significant near the band edge.

In (4.147) we have already set t∗ =
√

1/(1 + a∗2) in order to guarantee unit variance
of the corresponding DOS. Note that the inverse transformation function F−1 is not
unique for the t− t′ lattice; this didn’t matter here because both roots corresponding
to the same εk also yield the same v2

k,x. As expected on physical grounds, the Fermi
velocity vanishes at the band edge. In fact, 〈v2

k,x〉(ε) is proportional the distance from
the band edge as illustrated in Fig. 4.24 (thick lines). Evidently, the assumption of
〈v2

k,x〉(ε) being constant (as implied by the formulas derived for the hc lattice) is
bad already for |a∗| = 0.1 and fails completely for stronger frustration |a∗| = 0.3
and beyond. In particular, the dependence of transport properties on the degree of
frustration may even be dominated by the change in 〈v2

k,x〉(ε).
The evaluation of the second derivative is a bit more complicated since here both

roots of F(ε̃) = ε contribute differently. Therefore, we split the total DOS of the
t− t′ lattice

ρ(ε, a∗) =

{ √
2
π

1+a∗2

r(ε,a∗)
exp

(

− 1+r2(ε,a∗)
4a∗2

)

cosh
(
r(ε,a∗)
2a∗2

)

for sign(a∗)ε < r0

0 otherwise ,
(4.148)

where r(ε, a∗) =
√

1 + 2a∗(a∗ −
√

2ε
√

1 + a∗2) and where the band edge is given by

r0 = (a∗ + 1/(2a∗))/
√

2, into two contributions (with the same boundaries):

ρ±(ε, a∗) =

√

1

2π

1 + a∗2

r(ε, a∗)
exp

(

−
(
1± r(ε, a∗)

)2

4a∗2

)

. (4.149)

Using the notation

h0(ε, a
∗) =

1

2a∗2
−
√

2(a∗ +
1

a∗
); h±(ε, a∗) =

√
2a∗h0(ε, a

∗)±
√

1 + h0(ε, a∗)

1 + a∗2

(4.150)
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Figure 4.25: DMFT transport characteristics of the t−t′ lattice: Lattice-dependent terms
entering the expression (4.140) for the transverse conductivity. a) Intermediate result:

d〈∂2εk
∂k2

x
〉(ε) = ρ̃′(ε)/ρ(ε) multiplied by 〈|vk|2〉(ε) = ρ̃(ε)/ρ(ε). b) Multiplication by the DOS

ρ(ε) yields the correct lattice dependence (thick lines). Thin lines: corresponding results of
an (unjustified) application of expressions valid for the pure hc lattice as used by Merino
and McKenzie (2000). The limit a∗ = −∞ is equivalent to the fcc lattice.

the effective second derivative can be derived to read (for a∗ ≤ 0)

d〈∂
2εk
∂k2

x

〉(ε, a∗) =
h+(ε, a∗)ρ+(ε, a∗) + h−(ε, a∗)ρ−(ε, a∗)

ρ(ε, a∗)
. (4.151)

Evaluations of these expressions for moderate frustration are shown in Fig. 4.25a.
Note the strong deviations compared to the hc result (straight solid line). Figure
4.25b depicts expectation values multiplied by the noninteracting DOS as they enter
the computation of the transverse conductivity. Clearly, the correct curves (thick
lines) bear little resemblance to an evaluation of the hc results for the t − t′ DOS
(thin lines). Consequently, the study by Merino and McKenzie (2000) should be
redone using the results presented in this subsection.

4.6 QMC Results for the Bethe Lattice

In this section, we discuss important practical aspects for numerical DMFT calcula-
tions of the optical conductivity σ(ω) and present results for the half-filled one-band
Hubbard model with semi-elliptic DOS near the metal-insulator transition. Building
upon the framework developed in Sec. 4.4, we do not only present conductivity data
for the stacked Bethe lattice considered previously in the literature, but also for the
new isotropic model with longer-range hopping and for the fully disordered model.
While it is clear a priori that all results corresponding to the same local spectra share
some common features, the differences will be seen to be significant, in particular
in the metallic phase. Properties like the Hall conductance and the thermopower,
which we discussed in the previous section, need not be computed since they vanish
identically for the particle-hole symmetric systems under consideration.
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4.6.1 Numerical Procedure for QMC Data

Within the DMFT framework, the optical conductivity may be expressed in the
coherent case48 as [see (4.64) - (4.67)]

Re σxx(ω) = σ0

∞∫

−∞

dε ρ̃xx(ε)

∞∫

−∞

dω′Aε(ω
′)Aε(ω

′ + ω)
nf(ω

′)− nf(ω + ω′)

ω
, (4.152)

where σ0 = 2πe2

~2
N
V

and nf(ω) =
(
1 + eβ(ω−µ)

)−1
. Evidently, practical calculations

require two basic ingredients: ρ̃xx(ε) = 1
N

∑

k v
2
kx
δ(ε− εk) measures the noninteract-

ing density of states weighted with the squared Fermi velocity and thus contains all
necessary information about the lattice. For a given model (characterized by its lat-
tice topology and hopping parameters), this function can be determined once and for
all, independent of temperature and interaction. For lattices with semi-elliptic Bethe
DOS, this task was solved in Sec. 4.4. The remaining problem is the computation
of the “momentum-dependent” (i.e., dependent on the noninteracting dispersion ε)
interacting spectral function

Aε(ω) = − 1

π
ImGε(ω) , (4.153)

where

Gε(ω) =
1

ω − ε− Σ(ω)
. (4.154)

An evaluation for real frequencies ω yields

Aε(ω) = − 1

π

Im Σ(ω)
(
ω − ε− Re Σ(ω)

)2
+
(
Im Σ(ω)

)2 . (4.155)

Once Σ(ω) is known on the real axis, the computation of σ(ω) reduces to the eval-
uation of a two-dimensional integral (over the variables ε and ω ′). Note that the
“momentum”-dependent spectral functions Aε(ω) are strongly peaked in the metallic
phase (where |Im Σ(ω)| is small for ω ≈ 0; cf. Fig. 4.29) which can in principle cause
numerical instabilities; still, this step is straightforward.

In the context of QMC calculations, the real-frequency self-energy Σ(ω) has to
be extracted in a multi-step procedure49 which is summarized in Fig. 4.26 and will
be discussed in the remainder of this subsection. All steps will be illustrated on
the basis of the spectral function of the Hubbard model with semi-elliptic DOS at
T = 0.05 and U = 4.0 shown as solid line in Fig. 3.77 in Sec. 3.8 (resulting from QMC
using ∆τ = 0.1 and MEM using a flat default model). The corresponding imaginary
part of the real-frequency Green function is indicated by circles in Fig. 4.27. It will
become apparent later that the frequency grid ∆ω = 0.1 used in the MEM procedure

48For the cases of disorder or a single-link topology which imply incoherent transport, see sub-
section 4.4.2 and the results presented in subsection 4.6.3.

49The QMC method itself and the MEM determination of the local spectral function A(ω) =
− 1

π ImG(ω) have already been discussed in Sec. 1.3, Sec. 1.4, and Sec. 3.8.
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Figure 4.26: Scheme for the computation of σ(ω) on the basis of the local spectral function
A(ω) (cf. Sec. 1.4 and Sec. 3.8), of ρ(ε), and of ρ̃(ω). A Kramers-Kronig transformation
produces the full Green function from which the self-energy Σ(ω) can be obtained via
an inversion of the momentum integrated lattice Dyson equation. Finally, the numerical
evaluation of the integrals in (4.152) yields σ(ω).
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Figure 4.27: QMC results (for ∆τ = 0.1) at half filling, semi-elliptic DOS, T = 0.05,
and U = 4.0: Imaginary part of the real-frequency Green function ImG(ω) (circles) as
obtained from MEM on a grid with ∆ω = 0.1. This function is interpolated on a fine grid
with ∆ω = 0.005 (dashed line) in order to obtain ReG(ω) (solid line) via Kramers-Kronig
transformation. Small crosses indicate the corresponding result without interpolation.
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is too coarse for the numerical integrations which will be performed according to the
lowest-order approximation

xn∫

x0

dxf(x) ≈ ∆x
n−1∑

l=0

f(xl) + f(xl+1)

2
, (4.156)

where xi = i∆x. Therefore, ImG is first interpolated50 and evaluated on a finer
grid with the resolution ∆ω = 0.005 (dashed line in Fig. 4.27). The Kramers-Kronig
transformation is then performed using (4.156) which yields ReG on the same fine
grid (solid line). In order to demonstrate the importance of the interpolation proce-
dure, the result of a direct Kramers-Kronig transformation is also shown in Fig. 4.27
(small crosses). The difference between both estimates for G are relatively small, but
clearly visible.

The next step, the numerical inversion of the k integrated Dyson equation (on
the fine grid) falls into the class of complex root-finding problems (plus a trivial
integration). Such problems are less trivial than real-valued one-dimensional root-
finding problems since the solution cannot be bracketed. We have accomplished the
solution using an adapted two-dimensional (in the Gaussian plane) Newton scheme;
its Jacobian is specified by

∂ImG

∂Im Σ
=

∂ReG

∂Re Σ
=

∞∫

−∞

dε ρ(ε)
(ω − ε− Re Σ)2 − (Im Σ)2

[
(ω − ε− Re Σ)2 + (Im Σ)2

]2 , (4.157)

where we have suppressed the ω-dependence of G and Σ for notational convenience
(since Dyson equation is local in ω anyway), and

∂ImG

∂Re Σ
= −∂ReG

∂Im Σ
=

∞∫

−∞

dε ρ(ε)
2 (ω − ε− Re Σ) Im Σ

[
(ω − ε− Re Σ)2 + (Im Σ)2

]2 . (4.158)

In our program, the iterative search can be stabilized by underrelaxation (typically
using a factor of 0.5). Note that the existence of an analytical solution Σ(ω) (with
Im Σ(ω) < 0) of the inverse Dyson equation is by no means guaranteed for an ar-
bitrary spectral function A(ω). For example, the maximum value of the spectral
function must not exceed the maximum of the noninteracting DOS in the homoge-
neous case. On the other hand, numerical errors can easily produce such unphysical
spectra since the (unrestricted) MEM does not incorporate model specific physical
information. Then, the root-finding algorithm will fail to converge at least for some
isolated frequencies ω. In our implementation of the algorithm, such isolated failures
can be fixed by linear interpolation of the solutions at adjacent grid points. The
fact that this was necessary only for the strongest interaction U = 5.5 is a further

50We have chosen linear interpolation not only for sake of simplicity, but also for robustness.
While for the metallic case a cubic spline interpolation might yield a better approximation of the
smooth spectrum, such a higher order scheme is dangerous in general since it may lead to ringing
(oscillations) and to nonanalytic solutions (i.e., solutions of the wrong sign) near band edges.
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Figure 4.28: QMC results (for ∆τ = 0.1) at half filling, semi-elliptic DOS, T = 0.05,
and U = 4.0: Real (solid line) and imaginary (dashed line) part of the real-frequency self-
energy as derived from the corresponding curves for G(ω) shown in Fig. 4.27 by inversion
of the Dyson equation. Results obtained using a coarse grid (crosses) are seen to violate
analyticity: a Kramers-Kronig transform (dotted line) of the “coarse” result for ImΣ(ω)
deviates significantly from the direct “coarse” estimate for ReG(ω).

indication of the high quality of the MEM spectra. For the particular case of the
semi-elliptic Bethe DOS studied in this section, the root-finding effort could have been
avoided (and was checked) by using the explicit analytic expression. The numerical
approach, however, is completely general and will also be used in the LDA+DMFT
context in chapter 5 (where it is unavoidable).

The resulting estimates for the self-energy (symmetrized and with a slightly
coarser grid resolution ∆ω = 0.025) are shown as solid and dashed lines for Re Σ(ω)
and Im Σ(ω), respectively, in Fig. 4.28. The corresponding results, computed on the
coarse grid (crosses) are seen to deviate slightly from these curves. More importantly,
the “coarse” results violate analyticity significantly: a Kramers-Kronig transforma-
tion of the “coarse” estimate for Im Σ(ω) yields an estimate for Re Σ(ω) (dotted line)
which is clearly distinguishable from from the direct “coarse” estimate (and also from
the “fine” result). Precise analyticity of Σ(ω), however, is absolutely crucial since
otherwise spectral functions computed via the Dyson equation are not properly nor-
malized. “Momentum” resolved spectral functions Aε(ω) are shown in the main panel
of Fig. 4.29 for U = 4.0 and a range of values of ε ≥ 0. As seen in the inset, the
normalization of Aε(ω) is correct within 10−3 when the fine grid is used, i.e., an inter-
polation is performed before applying the Kramers-Kronig transformation to ImG.
Using the nonanalytic self-energy obtained without interpolation, the deviations are
about two orders of magnitude larger and would yield clearly visible effects on the
level of the momentum distribution function or of the conductivity. Thus, the effort
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Figure 4.29: Momentum resolved spectral functions Aε(ω) for T = 0.05 and U = 4.0,
based on Σ(ω) as presented in Fig. 4.28. Aε(ω) shows a three-peak structure for all ε; the
central resonance is sharpest for ε = 0. The inset shows the numerical norm

∫∞
−∞dωAε(ω)

which should equal 1 for all ε. The deviations from this sum rule do not exceed 10−3 when
the fine grid is used; for a coarse grid, the deviations reach 10−1.

of ensuring fully analytic estimates for Σ(ω) is certainly warranted.51

4.6.2 Results: Self-Energy on the Real Axis

In this subsection, we present QMC estimates of the real-frequency self-energy of the
half-filled Hubbard model with Bethe DOS for T = 0.05. All numerical results are
based on the procedure outlined in the previous subsection and on the MEM spectra
(corresponding to a flat default model with a frequency grid ∆ω = 0.1) presented in
Fig. 3.77 and Fig. 3.79 in Sec. 3.8.

The self-energy Σ(ω) for the metallic phase is shown in Fig. 4.30. Qualitatively,
the overall behavior meets the expectations for a strongly correlated Fermi liquid:
Re Σ(ω) is linear near the Fermi energy ω = 0 with negative slope which becomes
steeper upon approaching the transition. The imaginary part Im Σ(ω) is nearly
quadratic (as a function of ω) in this region. While the curvature increases steadily
with increasing U , the offset at ω = 0 is initially almost constant before a relatively
rapid increase at U = 4.7 signals the breakdown of the Fermi liquid. However, the
strong features seen for U = 4.7 appear exaggerated: from continuity one would ex-
pect that some weight should be shifted from the peaks in Im Σ(ω) to slightly larger

51In the following, slight remaining discrepancies in the Kramers-Kronig relations were eliminated
by replacing ReΣ(ω) by the Kramers-Kronig transform of Im Σ(ω).
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Figure 4.30: QMC results for T = 0.05: Self-energy in the metallic phase near the MIT.
a) The width of the central linear region of Re Σ(ω) decreases with increasing U while the
absolute slope near ω = 0 increases. b) Im Σ(ω) is nearly quadratic at small |ω|. The very
sharp features for U = 4.7 might be exaggerated due to numerical errors.

frequencies |ω|. On the other hand, the result for U = 4.7 (as well as for all other
values of the interaction) is robust numerically, i.e., is nearly invariant under the
choice of a default model (within the MEM procedure).

Results for the insulating phase are displayed in Fig. 4.31. Here, Im Σ shows a
single peak at ω = 0 which narrows with increasing U . While this peak is part of a
continuous spectrum [of Σ(ω)] for U ≤ 5.0, it appears δ-function like and surrounded
by a full gap for U = 5.5. Corresponding to the single-peak structure of Im Σ(ω), the
derivative of the real part Re Σ(ω) at ω = 0 is positive (and of large absolute value)
which implies that the quasiparticle weight Z as defined in (3.5) is negative.

Before turning to results for the optical conductivity, let us perform some addi-
tional checks of the results obtained so far. Since Σ(ω) is a retarded function which is
analytic in the upper half plane, it can be expressed in terms of its positive semidefi-
nite spectral function AΣ(ω) := − 1

π
Im Σ(ω). The norm of this spectral function gives

some measure of the total influence of the interaction on the single-particle properties.
A priori, one would expect this norm to be a smooth function of U , except possibly for
kinks or jumps at phase transitions. Thus, an evaluation of this norm can be useful
for identifying outliers caused by numerical errors. This expectation is indeed correct
as seen in Fig. 4.32, where circles indicate the numerical estimates based on the self
energies shown in Fig. 4.30 and Fig. 4.31. In fact, all results are nearly on a straight
line, even across the phase transition at U ≈ 4.7. Under the assumption that this
behavior is universal, i.e., that the true norm does not depend on the temperature
and on the model DOS, the total self-energy spectral weight must be proportional
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Figure 4.31: QMC results for T = 0.05: Self-energy in the insulating phase near the
MIT. a) With increasing U , the real part of Σ(ω) approaches 1/ω for not too small |ω|.
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a numerically almost singular delta function form inside a gap for U = 5.5.

4

5

6

7

8

9

3.5 4 4.5 5 5.5

- 
1 π- 

∫ d
ω

 Im
Σ(

ω
)

U

exact
QMC/MEM/Dyson

modified Σ

-50

-40

-30

-20

-10

0

0 0.2 0.4 0.6

Im
Σ(

ω
)

ω

U=4.7

Figure 4.32: QMC results for T = 0.05: The numerical results (circles) fulfill the sum rule
− 1
π

∫∞
−∞dω Im Σ(ω) = U2/4 for the self-energy within about 2%. The remaining discrepancy

can be traced to using the finite discretization ∆τ = 0.1 in QMC which makes the solutions
slightly more metallic. The inset gives a magnified view on Im Σ(ω) for U = 4.7: original
curve (long dashes) and modifications (short-dashed and dotted lines; see text) which reduce
the frequency sum (cross in main panel).



4.6. QMC Results for the Bethe Lattice 233

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10

σ(
ω

)

ω

orig
mod G
mod Σ

-2

0

2

4

6

0 2 4 6 8

∆σ
(ω

) 
/1

0-3

ω

Figure 4.33: Optical conductivity for the isotropic “redefined Bethe lattice” for T = 0.05
and U = 4.7: The slight modifications in Im Σ(ω) shown in the inset of Fig. 4.32 lead to
almost indistinguishable results for σ(ω); the inset gives a magnified view of the differences.

to U 2 by dimensional analysis. This assumption is indeed correct as can be shown
by evaluating the equations of motion of the impurity model (Potthoff, Wegner, and
Nolting, 1997); in the case of interest, the norm reads

∫∞
−∞dωAΣ(ω) = U 2/4 (solid

line in Fig. 4.32).52 Considering the numerous potential sources of errors entering
the sum rule (such as Trotter and statistical errors, incomplete convergence and the
MEM procedure) the deviations of typically 2% of our numerical results from the ex-
act values appear small; the good agreement lends further credibility to these results.

Furthermore, we can estimate if the total weight of the peaks in Im Σ(ω) for
U = 4.7 (dash-dotted lines in Fig. 4.30b) is too large: Since the total numerical
norm is relatively higher (though closer to the exact value) for U = 4.7 than for
other values of U , one might suspect that the extra weight is due to a numerical error
and should be corrected. In order to investigate this question and in particular the
possible impact on the resulting estimate for σ(ω), we have generated two adjusted
estimates for Σ(ω) shown in the inset of Fig. 4.32. In the first case (short-dashed
line), the peak height in the original estimate for Im Σ(ω) (long-dashed line) has been
reduced so that the total is in line with the norms obtained for other values of U (cross
in the main panel). Alternatively, the MEM spectrum has been adjusted slightly so
that it lead to a softer peak in Im Σ(ω) (dotted line in the inset). The resulting three
different estimates for Σ(ω), however, yield almost indistinguishable conductivities
as depicted in Fig. 4.33. Thus, at least the most prominent uncertainty for Σ(ω) for
U = 4.7 is qualitatively irrelevant for the results to be presented in the remainder of
this section.

52This sum rule which (to the best of our knowledge) has not been mentioned in the DMFT-
QMC community so far can also be directly applied on the imaginary axis in the context of QMC
calculations. For its use in an improved Fourier scheme and its generalization to arbitrary filling
and to the multi-band case, see App. C and Knecht (2002).
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Figure 4.34: Optical conductivity σ(ω) for the isotropic “redefined Bethe lattice” at T =
0.05 in the metallic phase. With increasing U , weight is shifted from a Drude peak at ω ≈ 0
to a mid-infrared peak/shoulder at ω ≈ U/2 and, finally, to a broad incoherent peak at
ω ≈ U . The inset shows the partial f -sum

∫ ω
0 dω′σ(ω′) which saturates for ω ≈ 8.

4.6.3 Results: Optical Conductivity

This subsection comprises the main numerical results of this chapter. Using the
procedures detailed in the previous subsection, we will here present results in the
paramagnetic low-temperature phase near the Mott metal-insulator transition. The
optical conductivity data will in turn be shown for three different definitions, i.e.,
different models compatible with a semi-elliptic DOS: first, the isotropic “redefined
Bethe lattice” specified in Sec. 2.4 (using the general dispersion approach developed
in Sec. 2.3), then the (anisotropic) stacked Bethe lattice, and, finally, the incoherent
definition which corresponds to a disordered model or to a single-chain layout of the
Bethe lattice. The numerical results for the first two cases will be based on the self-
energies Σ(ω) shown in Fig. 4.30 and Fig. 4.31. An estimate of the self-energy is not
needed in the last, incoherent case; here, the optical conductivity will be computed
directly from the MEM spectra A(ω) shown in Fig. 3.77 and Fig. 3.79. In all cases,
the constants e, ~, and the lattice spacing a are set to unity which corresponds to
setting σ0 = 2π [for the coherent case; cf. (4.67)].

Coherent Transport

We start the presentation of optical conductivity data with the redefined Bethe lat-
tice; for this model, ρ̃(ω) has the exact analytic expression (4.133). Figure 4.34
displays results for the metallic phase near the MIT. Each curve features a promi-
nent “Drude” peak at low frequencies which is associated with excitations within
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Figure 4.35: Drude part of the optical conductivity σ(ω) for the isotropic “redefined Bethe
lattice” at T = 0.05 in the metallic phase. The numerical results (symbols) are fitted with
Lorentzian curves (lines); their normalization, the Drude weight, decreases rapidly with
increasing U as seen in the inset, while their width increases only slightly.

the quasiparticle peaks (of the local spectra, cf. Fig. 3.77 and Fig. 3.79). Incoherent
absorption bands, roughly in the range above ω & 1 can be subdivided into mid-
infrared contributions at 1 . ω . 3 which are associated with excitations from the
lower Hubbard band to the quasiparticle peak or from the quasiparticle peak to the
upper Hubbard band while a contribution at ω ≈ U is associated with excitations
from the lower to the upper Hubbard band. Depending on the interaction strength
U , this subdivision appears in the form of shoulders or genuine peaks. The inset
of Fig. 4.34 shows the partial optical f -sum which allows for a direct comparison
of the weights associated with the different contributions. Note the analogy of this
representation to the experimental curves displayed in Fig. 4.3. As expected, both
the contribution of the Drude peak and the total f -sum decrease for increasing U .
Figure 4.35 concentrates on the coherent peaks seen at low frequencies. Here, the
numerical results are indicated by symbols, while the lines represent Lorentzian fits.
The good quality of the fits allows for a determination of the weight and the width
of each Drude peak. The drude weights are shown as a function of U in the inset of
Fig. 4.35; its initially linear decay with increasing U becomes more rapid near the
MIT. Here, lines are guides to the eye only. The width of the Drude peak (not shown)
is nearly constant (about 0.08) for U ≤ 4.4 and increases to 0.16 for U = 4.7. Figure
4.36 shows σ(ω) and its f -sum for the insulating phase using the same scales as in
Fig. 4.34. Just above the MIT, i.e., for U = 4.8, the conductivity spectrum is very
broad with long tails both for small and large frequencies. Further away from the
transition, weight shifts towards the central region, i.e., the width of the absorption
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Figure 4.36: Optical conductivity σ(ω) for the isotropic “redefined Bethe lattice” at T =
0.05 in the insulating phase. The inset shows the partial f -sum (cf. Fig. 4.34).

band shrinks slightly (by about 15% from U = 4.8 to U = 5.5).
In the following, plots analogous to the last three figures will be shown (using

the same scales) for the stacked Bethe lattice discussed in subsection 4.4.3. For
notational simplicity, we will continue to write σ(ω) instead of using the notation
σxx(ω) appropriate for an anisotropic model. We expect to find qualitatively very
similar results as for the isotropic model considered before; still the differences will
be seen to be significant. In fact, Fig. 4.37 and Fig. 4.38 demonstrate that within the
metallic phase both the Drude weights and the total f -sums are reduced significantly
compared with the isotropic case. The widths of the Drude peaks, however, are nearly
identical. No significant changes are observed in the insulating phase in Fig. 4.39 up
to a slight reduction in the total f -sum.

Incoherent Transport

Completely incoherent transport follows both from Stumpf’s single-chain view of the
Bethe lattice detailed in subsection 4.4.2 and from offdiagonal disorder as discussed in
subsection 4.4.4. We will here consider the disordered case which yields an extensive
conductivity. The formal expression (4.132) reads for the paramagnetic phase and
the choice of units specified above

σxx(ω) = 2π

∞∫

−∞

dω′A(ω′)A(ω′ + ω)
nf(ω

′)− nf(ω
′ + ω)

ω
. (4.159)

The primary new feature seen in Fig. 4.40 and Fig. 4.41 for the metallic phase is
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Figure 4.37: Optical conductivity σ(ω) for the anisotropic stacked Bethe lattice at T =
0.05 in the metallic phase; analogous to Fig. 4.34.
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Figure 4.38: Drude part of the optical conductivity σ(ω) for the anisotropic stacked Bethe
lattice at T = 0.05 in the metallic phase; analogous to Fig. 4.35.
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Figure 4.39: Optical conductivity σ(ω) for the anisotropic stacked Bethe lattice at T =
0.05 in the insulating phase; analogous to Fig. 4.36.
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Figure 4.40: Optical conductivity σ(ω) for a fully disordered model or Stumpf’s layout of
the Bethe lattice at T = 0.05 in the insulating phase; analogous to Fig. 4.34.
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Figure 4.41: Low-frequency part of the optical conductivity σ(ω) for a fully disordered
model or Stumpf’s layout of the Bethe lattice at T = 0.05 in the metallic phase. Due to
the incoherent character, no Drude peaks can be identified.

the large width of the low-frequency peaks which here depends on the width of the
quasiparticle peak in the spectrum and, therefore, decreases with increasing U . Since
the low-frequency part of σ(ω) does not have a Drude shape, the lines in Fig. 4.41 are
guides to the eye only. The results for the insulating phase presented in Fig. 4.42 are
hardly distinguishable from the corresponding results obtained for the clean stacked
case (Fig. 4.39). We may conclude that the conservation of momentum (which applies
for the isotropic and the stacked, but not for the disordered model) does not matter
for transport in the insulator. In this phase, all relevant states are spread out so far
in momentum space that the overlap for a given momentum becomes asymptotically
proportional to a constant, i.e., Aε(ω)Aε(ω

′) ∝ A(ω)A(ω′). In order to emphasize
that offdiagonal disorder matters in general, let us take a look at the noninteracting
case. Then, coherent transport is dispersionless, i.e., σ(ω) ∝ δ(ω). In contrast,
dissipation arises for energies up to the bandwidth in the disordered case as shown
in Fig. 4.43 for various temperatures and band fillings.

Comparison of the f-sums

The optical f -sums corresponding to the estimates of σ(ω) obtained in the last sub-
section are displayed in Fig. 4.44a. Evidently, the f -sum is larger for the isotropic
than for the stacked Bethe lattice, in particular in the metallic phase. This differ-
ence can be attributed to the enhanced squared Fermi velocity in the isotropic model
(see Fig. 2.17): The enhancement is largest near the Fermi surface, at ε = 0 by
a factor of π/2 ≈ 1.57. A corresponding increase in the f -sum is expected in the
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Figure 4.42: Optical conductivity σ(ω) for a fully disordered model or Stumpf’s layout of
the Bethe lattice at T = 0.05 in the insulating phase analogous to Fig. 4.36.

a) b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2 2.5 3 3.5 4

σ(
ω

)

ω

T=0.0
T=0.2
T=0.5
T=1.0
T=5.0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2 2.5 3 3.5 4

σ(
ω

)

ω

µ=0.0
µ=0.5
µ=1.0
µ=1.5
µ=1.9

Figure 4.43: Optical conductivity σ(ω) for a noninteracting (U = 0) model with semi-
elliptic DOS and full disorder or a single-chain layout. a) Half-filled case for different
temperatures. b) Doped case at T = 0.
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Figure 4.44: Optical f -sum for models with semi-elliptic DOS, computed by numerical
integration of the results for σ(ω) shown in Fig. 4.34 – Fig. 4.42: a) scaled to unit a and
unit variance of the DOS, b) rescaled to unit average hopping distance (division of the
f -sum of the isotropic model by 1.05406).

limit U → 0 and T → 0 where only states near the Fermi surface can contribute
to transport. Averaged over the whole Brillouin zone, the enhancement is only (in
general)

∫∞
−∞dε ρ̃(ε) which equals the average hopping distance

∑∞
D=1Dt

∗
D

2; using the
values for the hopping amplitudes given in Table 2.1, it evaluates here to 1.05406.
A corresponding increase in the f -sum in the limits T → ∞ and/or U → ∞ can be
read off from the form (4.86) of the f -sum rule since in these cases the derivative of
the momentum distribution function becomes asymptotically constant (as a function
of ε). This asymptotic behavior is already well approached for U = 5.5 as seen in
Fig. 4.45b. If the asymptotic enhancement is removed by scaling the average hopping
distance to unity (Fig. 4.44b), the f -sums of the isotropic and of the stacked model
(as well as of the disordered model) are nearly identical.

In Fig. 4.46, partial contributions to the f -sum rule are displayed as a function
of momentum ε so that the f -sums shown above would be obtained by integration
over ε. The picture differs considerably depending on whether the sum rule is used
in terms of the momentum distribution function nε as in Fig. 4.46a or in terms of its
derivative as in Fig. 4.46b . In both cases, however, the isotropic model (thick lines)
implies contributions to σ(ω) which arise from smaller values of |ε| than the stacked
model (thin lines). This is true in particular for the metallic phase at U = 4.0;
transport is here dominated by states near the Fermi surface. Such behavior is
not only consistent with Fermi-liquid theory, but also most compatible with the
DMFT approach: nongeneric momenta with extremal |ε| should not influence results
of DMFT calculations.
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Figure 4.45: a) Momentum distribution function nε as defined in (4.79) and b) (minus)
its derivative.
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Figure 4.46: Contributions to the f -sum as a function of “momentum” ε for the redefined
Bethe lattice (thick lines) and the stacked Bethe lattice (thin lines) corresponding to the
equivalent formulations a) (4.86) and b) (4.87) of the f -sum rule.

4.7 Conclusion

In this chapter, we have presented studies of the optical conductivity σ(ω) and its
f -sum rule in high dimensions with particular focus on “the Bethe lattice”, i.e., a
class of lattices with semi-elliptic density of states (DOS).

Initially, the project of computing numerical estimates of σ(ω) on the basis of
quantum Monte Carlo (QMC) solutions of the half-filled Hubbard model with a
semi-elliptic DOS seemed straightforward: The formalism had already been worked
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out for the hypercubic (hc) lattice and had been applied for general filling based
on NCA (Pruschke et al., 1993) and QMC (Jarrell, Freericks, and Pruschke, 1995)
calculations. Rozenberg et al. (1995) had even applied the same formalism to the
Bethe lattice case (on the basis of ED and IPT data) and extensively discussed the
f -sum rule in this context. Indeed, our implementation of the algorithm was soon
accomplished; using an early version of our set of programs, results were published
for a manganite model (Held and Vollhardt, 2000). However, we realized that the
conventional treatment and the resulting f -sum rule were specific to the hypercubic
lattice and not directly applicable to the Bethe lattice. In particular, we found
numerical violations of the (incorrect) sum rule stated by Rozenberg. In addition,
Janǐs (1999) claimed the foundation of the DMFT treatment of conductivities to be
incorrect.53 Thus, we found it necessary to thoroughly check the formalism and to
derive extensions for the general case in high dimensions.

We have carefully reviewed the Kubo formalism for the optical conductivity and
the simplifications in the limit of infinite dimensionality (or, more generally, infinite
coordination number). We have presented the first evaluation of the theory in the
case of t−t′ hopping and have shown that Merino and McKenzie’s (2000) (unjustified)
use of the conventional hc formalism leads to significant errors in the computation
of the transverse conductivity and the thermal conductivity. We have derived a new
expression of the optical f -sum rule which is universally valid within the DMFT and
additionally a form specific to the general dispersion formalism developed in Sec. 2.3.

We have presented a comprehensive discussion of the optical conductivity for lat-
tices with semi-elliptic “Bethe” DOS in infinite dimensions. In particular, we have
discovered a flaw in Freericks’s (2000) derivation of σ(ω) for a tree-like layout of the
Bethe lattice and have shown that the assumption under which Millis (2002) ob-
tained essentially the same result is equally unfounded. We have pointed out that
an application of the hc formalism generally implies anisotropic transport and have
established the connection between the f -sum and a static local property of such
models. We have further demonstrated and explained the incoherence of transport
resulting from Stumpf’s (1999) single-chain layout of the Bethe lattice or from strong
offdiagonal disorder and have developed a necessary criterion for coherent transport
in the noninteracting limit. We have also presented the first consistent derivation for
σ(ω) compatible with a semi-elliptic DOS that implies isotropic transport which is
fully coherent in the noninteracting limit. This redefinition of the Bethe lattice (in
the DMFT sense) as an isotropic, regular and clean lattice by the general dispersion
method and the demonstration that the associated transport properties are robust
(with respect to finite dimensionality or hopping range) removes, finally, the patholo-
gies previously associated with the DMFT treatment of transport in connection with
non-Gaussian DOSs.

We have written programs for the DMFT computation of conductivities (on the
basis of local spectra) for arbitrary lattice types and have developed a scheme that

53It has become clear later that Janǐs’s (1999) statement “the current-current correlation function
and consequently the electrical conductivity do have nontrivial vertex corrections in the mean-field
limit contrary to what has been up to now assumed from symmetry considerations within the con-
serving scheme” does not apply to the optical conductivity (i.e., in the long-wavelength limit).
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is particularly robust in combination with the QMC code and the variant of the
maximum entropy method used within this work. The high accuracy of our method
has been successfully tested by comparison with a newly established sum rule for the
(real-frequency) self-energy. We have presented numerical results for σ(ω) of the half-
filled Hubbard model with semi-elliptic DOS near the metal-insulator transition for
all valid definitions, i.e., for the incoherent models, the anisotropic stacked model, and
for the new isotropic “redefined Bethe lattice”. Comparing the qualitative features,
the Drude weight, and the f -sums, we have shown that the exact definition does
matter in general, in particular for not too large interaction.

We have pointed out in the beginning of this chapter that f -sum rules as discussed
above may be regarded as artifacts of the single-band assumption. While they may
still be useful as approximate partial sum rules, a different, universal f -sum rule is
obtained in a full model. We have only briefly touched upon additional features in
σ(ω) which are specific to multi-band models or to non-Bravais lattices. Furthermore
we had to limit the discussion of finite dimensionality to a fully local theory where
the bubble formula for σ(ω) remains valid; vertex corrections not included in this
approximation are expected to increase the static conductivity since the importance
of umklapp scattering is reduced (Uhrig and Vollhardt, 1995). On the other hand,
a reduction of the static conductivity and a broadening of the Drude peak is ex-
pected to result from impurities and from electron-phonon interaction, which were
also neglected in this chapter.
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Chapter 5

Realistic Modeling of Strongly
Correlated Materials

Well-controlled studies of abstract models like the one-band Hubbard model as pre-
sented in the preceding chapters shed light on important physical phenomena, even
when the models themselves are neither fully realistic nor complete (full frustration,
single-band assumption, etc.). Still, one ultimate goal of condensed matter theory is
a controlled description of materials which is as realistic as possible and allows for a
material-specific calculation of a wide range of properties. One step into this direc-
tion, although not fully controlled, is the recently developed LDA+DMFT method
which we will apply in this chapter for modeling the doped transition metal oxide
La1-xSrxTiO3. We will introduce the material under investigation and demonstrate
the failure of LDA to reproduce its photoemission spectrum in Sec. 5.1, then discuss
conventional density functional theory in Sec. 5.2 and introduce the LDA+DMFT
method in Sec. 5.3. Numerical results will be presented and compared with experi-
ments in Sec. 5.4.

The work presented in this chapter was started in a collaboration with the Optics
of Metals Laboratory at the Institute of Metal Physics of the Ural Division of the
Russian Academy of Sciences in Yekaterinburg lead by Prof. V. I. Anisimov. In
particular, all LDA calculations were performed by Igor Nekrasov from Anisimov’s
group. The initial QMC and MEM results presented in subsection 5.4.1 were mainly
calculated by Nekrasov and Held using Held’s multi-band version of the QMC code
while the photoemission spectra were obtained using an analysis program written as
part of this thesis. The QMC computations at higher accuracy and the study of the
impact of different MEM procedures on the resulting spectra presented in subsection
5.4.2 as well as the calculation of transport properties in subsection 5.4.3 were also
performed by the author of this thesis.
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Figure 5.1: Structure of La1-xSrxTiO3 : a) Idealized (cubic) perovskite structure: Ti ions
are octahedrally coordinated by oxygen in a cubic matrix of sites occupied by either La or
Sr (presumably disordered). The size of spheres in the figure is not related to ionic radii.
b) Orthorhombic distortion, i.e., alternating tilting of oxygen octahedra which reduces the
angle Ti-O-Ti to α ≈ 155◦. c) Scheme of band degeneracy; the t2g band contains one
electron per unit cell for LaTiO3 and is empty for SrTiO3.

5.1 La1-xSrxTiO3, a Strongly Correlated Transition

Metal Oxide

La1-xSrxTiO3 belongs to a large class of 3d transition metal oxides of composition
ABO3, where A is a rare earth or alkalide (or a nonstoichiometric combination
thereof) and B a transition metal and which crystallize in the orthorhombically dis-
torted perovskite (GdFeO3-type) structure. The idealized cubic perovskite structure
is shown in Fig. 5.1a. In the distorted perovskite, the almost perfectly rigid oxygen
octahedra tilt alternatingly in all space directions so that the angle α (Ti-O-Ti) is
reduced from its cubic value of 180◦ to, e.g., α ≈ 155◦ for La1-xSrxTiO3 (MacLean,
Ng, and Greedan, 1979), see Fig. 5.1b.1 Formally, pure SrTiO3 is an ionic insulator
where all ions reach noble gas configurations.2 In fact, this material is a band insu-
lator which is seen both in experiment and band structure calculations and makes
this material well-suited as substrate or spacer material for high-Tc superconducting
films.3 Both experiment and band-structure calculations imply that La donates 3

1The degree of distortion can in general be estimated from ionic radii in terms of the tolerance
factor f = (rA + rO)/(

√
2(rB + rO)), where f ≈ 0.8 corresponds to α ≈ 140◦ and f ≈ 0.95

corresponds to α ≈ 157◦, respectively (Imada et al., 1998).
2O needs 2 electrons to obtain the [Ne] configuration; the atomic configuration is [Kr] 5s2 for Sr,

[Ar] 3d14s2 for Ti, and [Xe] 5d16s2 for La.
3The chemically reduced component, SrTiO3−δ, is a superconductor with Tc . 0.5 K (Schooley,

Hosler, Ambler, Becker, Cohen, and Koonce, 1965).
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a) b)

Figure 5.2: a) Néel temperature TN and remanent magnetization at T = 10 K for
La1-xSrxTiO3 as a function of doping (Hays et al., 1999). b) Phase diagram for LaTiO3+x

(Lichtenberg et al., 1991).

electrons, i.e., formally reaches noble gas configuration in La1-xSrxTiO3 as well, so
that Ti obtains the configuration 3d1 in pure LaTiO3. As discussed in App. A.1,
cubic symmetry splits the 3d band into a twofold degenerate eg and a threefold de-
generate t2g band as depicted in Fig. 5.1c. While in principle the reduced symmetry
due to distortion should further split up the t2g band, this effect is negligible in prac-
tice since the local ligand field of the Ti ion is dominated by the local octahedral
oxygen coordination which retains cubic symmetry. The single electron per unit cell
therefore occupies predominantly the threefold degenerate t2g bands hybridizing via
oxygen 2p states. The effective overlap between Ti states of neighboring unit cells
and, consequently, the effective band width (in a single-particle picture) is reduced by
orthorhombic distortion compared to the idealized cubic structure for La1-xSrxTiO3

(and even more for YTiO3 where α ≈ 142◦).

Experimentally, pure LaTiO3 is an antiferromagnetic insulator with a Néel tem-
perature estimated between TN ≈ 125K (Eitel and Greedan, 1986) and TN ≈ 145 K
(Hays, Zhou, Markert, and Goodenough, 1999); see Fig. 5.2. The Ti magnetic mo-
ment saturates at 0.45 µB and the energy gap is about 0.2 eV (Goral, Greedan,
and MacLean, 1982; Crandles, Timusk, Garrett, and Greedan, 1994). At doping
x ≈ 0.05, La1-xSrxTiO3 undergoes an insulator-to-metal transition and becomes a
correlated paramagnetic metal with a strongly enhanced susceptibility and electronic
specific heat coefficient (Pickett, Erwin, and Ethridge, 1998). Apparently, the fab-
rication of samples of controlled stoichiometry and even the a posteriori analysis of
their composition are still nontrivial tasks for experimentalists. Often, only the for-
mal deviation δ = x+ y/2 from integer t2g filling of a composition La1−xSrxTiO3+y is
stated in results (Lichtenberg et al., 1991) as seen in Fig. 5.2b. For y > 0 such a for-
mula does no longer correspond to a unit cell since there is no place in the structure
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Figure 5.3: a) Photoemission spectra (squares) in comparison with LDA calculations
(solid lines) for La1-xSrxTiO3 (Fujimori, Hase, Nakamura, Namatame, Fujishima, Tokura,
Abbate, de Groot, Czyzyk, Fuggle, Strebel, Lopez, Domke and Kaindl, 1992). b) PES
over reduced energy range of various transition metal oxides with d1 configuration with
increasing deviations from LDA calculations from top to bottom. The curve “LaTiO3” gives
a magnified view of the PES of La1-xSrxTiO3 for x = 0.06 (Fujimori, Hase, Namatame,
Fujishima, Tokura, Eisaki, Uchida, Takegahara and de Groot, 1992).

for interstitial oxygen; instead vacancies form at La and Ti sites in this case (Hays
et al., 1999). As seen in Fig. 5.2a, recent measurements (with 1% relative accuracy
of the oxygen content) show a continuous decay of the remanent magnetization with
increased Sr doping while the Néel temperature jumps discontinuously with an inter-
mediate plateau. This behavior implies the existence of a two-phase region including
AF order for La1-xSrxTiO3 with 0.045 ≤ x ≤ 0.08 (Hays et al., 1999).

The importance of correlations is directly seen in Fig. 5.3a, a comparison between
measured photoemission spectra (PES) and theoretical estimates based on LDA band
structure calculations. Evidently, the oxygen 2p bands lying far below the Fermi
energy are well reproduced by LDA; in contrast, spectral weight corresponding to t2g
bands is predicted by LDA as a peak at the Fermi energy while the experiment shows
contributions at around -1.5 eV. The disagreement is strongest for small doping x
(i.e., large occupancy 1− x of the Ti t2g band) which is the case we will study in the
following. Both a magnified view of the t2g portion of the PES for La1-xSrxTiO3 for
x = 0.06, i.e., just outside the antiferromagnetic phase region, and a comparison to
other transition metal oxides with d1 configuration are shown in Fig. 5.3b.



5.2. DFT and LSDA 249

5.2 Density Functional Theory and Local Spin

Density Approximation

Density functional theory (DFT) is, originally, an approach for calculating ground
state properties via a mapping of the full interacting many-body problem onto an
effective single-particle problem. It is based on the observation that the ground state
energy of any N -electron system can be written as a functional of the electronic
density ρ(r) alone (Hohenberg and Kohn, 1964). Following Levy’s (1979) proof,
we split up the full electronic Hamiltonian (1.2) into internal contributions T̂ + V̂ee
and the external contribution V̂ext with 〈V̂ext〉 =

∫
drVext(r)ρ(r) =: Eext[ρ] . Since

both the kinetic energy T̂ and the Coulomb electron-electron interaction V̂ee have a
universal form, the functional

F [ρ] := min
ψ

{

〈ψ|T̂ + V̂ee|ψ〉
∣
∣
∣ 〈ψ|ρ̂(r)|ψ〉 = ρ(r)

}

, (5.1)

where ρ̂(r) measures the density at site r and ψ denotes a fermion many-body wave
function, is indeed universal,4 i.e., a functional of the density alone. In terms of this
functional, the basic theorems of DFT read

E[ρ] := F [ρ] +

∫

dr V̂ext ρ(r) ≥ EGS , (5.2)

F [ρGS] +

∫

dr V̂ext ρGS(r) = EGS , (5.3)

i.e., the energy functional E[ρ] defined in (5.2) is both an upper bound to the true
ground state energy EGS for arbitrary density distribution and coincides with EGS

for the true ground state density distribution ρGS.
5 The first theorem (5.2) follows

from an application of the usual variational principle 〈ψ|T̂ + V̂ee + V̂ext|ψ〉 ≥ EGS to
the wave function ψmin which minimizes the r.h.s. expression in (5.1). On the other
hand, each ground state wave function ψGS also minimizes T̂ + V̂ee in (5.1) for fixed
ground state density which proves (5.3). If the universal functional F [ρ] was known
explicitly and could be evaluated efficiently the ground state energy could be obtained
in an arbitrary external potential by minimizing E[ρ] defined in (5.2). Other ground
state properties could then be obtained using corresponding (possibly multi-valued)
functionals. In practice, however, a controlled computation of F [ρ] along the lines of
(5.1) (which would require the solution of jellium models with constrained density)
is not possible.

In this situation, it is useful to split up the energy functional differently (Kohn
and Sham, 1965),

E[ρ] = T0[ρ] + Eext[ρ] + EHartree[ρ] + Exc[ρ], (5.4)

4Note that the proof reproduced here implies universality of the functional F [ρ] only for fixed
particle number N . Implicitly, one usually assumes that the thermodynamic limit of the formalism
is well defined.

5One can show that even the external potential is a functional of the ground state density
(Hohenberg and Kohn, 1964). This finding is, however, not used in actual calculations and does not
extend to spin-resolved DFT with inclusion of magnetic fields (Capelle and Vignale, 2001).



250 5. Realistic Modeling of Strongly Correlated Materials

where T0[ρ] is not the true kinetic energy (Jones and Gunnarsson, 1989), but the
kinetic energy of a noninteracting N -particle system with density distribution {ρ(r)};
Eext was defined above and the Hartree energy is given by

EHartree =
1

2

∫

dr dr′ Vee(r − r′)ρ(r)ρ(r′) . (5.5)

The first three terms in (5.4) can be treated exactly, so that the methodological
problem is reduced to finding a good approximation for the exchange-correlation
energy for which (5.4) is a defining equation in connection with (5.1), (5.2), and
(5.5). This energy functional can be assumed to be much less dependent on details
of the density distribution than the full functional which includes very large kinetic
energy terms. Given an (approximate) explicit expression for Exc[ρ], the ground state
properties EGS and {ρGS} of some specified system are then found numerically by a
self-consistent solution of the Kohn-Sham equations,

[

− ~
2

2me

∇+ Vext(r) +

∫

dr′ρ(r′)Vee(r − r′) +
δExc[ρ]

δρ(r)

]

ϕi(r) = εi ϕi(r) , (5.6)

i.e., a Schrödinger-like equation for a set of single-particle wave functions {ϕi}Ni=1

which reproduce the density ρ(r) =
∑N

i=1 |ϕi(r)|2. Note that these wave functions
and the associated eigenvalues εi have no direct meaning in the context of the original
many-body problem.

In the DFT calculations presented in this work we follow the usual approach of
treating the functional Exc in local spin density approximation (LDA or LSDA),6

Exc[ρ] ≈
∫

dr ρ(r) vLDA
xc

(
ρ↑(r), ρ↓(r)

)
, (5.7)

where the functional dependence of vLDA
xc is usually taken from parameterizations of

solutions of simplified jellium models (von Barth and Hedin, 1972; Gunnarsson and
Lundqvist, 1976) or from the QMC solution by Ceperley and Alder (1980) of the jel-
lium model (Vosko and Wilk, 1980; Perdew and Zunger, 1981). Different parameter-
izations lead to slightly different results, but are all free from adjustable parameters.
For exact properties of Exc[ρ] and possible general approximations beyond LDA see,
e.g., the review by Jones and Gunnarsson (1989).

Even though the LDA problem (5.6) with (5.7) is conceptually much simpler than
the original many-body problem, its numerically stable solution in the presence of
singular ion potentials and for a relatively large number of electrons is still a non-
trivial task. For condensed matter problems7 one may distinguish full-potential from

6It is easy to check that the above derivations directly generalize to functionals F [ρ↑, ρ↓] and
E[ρ↑, ρ↓] of the spin density. While in principle the approaches with and without explicit spin
resolution are equivalent (cf. footnote 5 on page 249) since {ρ↑} and {ρ↓} are functionals of {ρ}, it
is found that better approximations to the exchange-correlation energy are available in terms of the
spin resolved densities.

7Specialized methods and, in particular, basis sets for the single-particle wave functions ϕi exist
for quantum chemistry problems.
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pseudopotential approaches where the latter use weak effective potentials for valence
electrons in order to get rid of core oscillations which would require very large basis
sets in plane-wave expansions. While newer codes allow for efficient full-potential cal-
culations in a linear augmented plane wave (LAPW) basis [as, e.g., Blaha, Schwarz,
and Luitz’s (1999) package VIENNA], the problem can be avoided by using atomic-
like basis sets at least near the ionic cores. In the muffin-tin orbital (MTO) approach,
a minimal basis characterized by angular momentum quantum numbers is constructed
where the external potential only acts inside a spherical “muffin tin”. The energy
dependence of the MTOs is linearized and an energy-independent set obtained in the
LMTO method which is then reliable only for valence states (Andersen, 1975). Lifting
the constraint of minimalism, more localized8 “tight binding” basis functions were
introduced in the TB-LMTO approach (Andersen, Pawlowska, and Jepsen, 1986)
which is usually used in connection with the atomic sphere approximation (ASA) of
a locally spherical resulting potential.

It should be stressed that DFT as a ground state method cannot directly be used
for the determination of excitation spectra. In principle, apart from true ground state
properties, only the sizes of energy gaps can be computed as differences of ground
state energies for systems with N and N + 1 electrons, respectively. In practice,
however, the eigenvalues εi of the single particle problem (5.6) often compare favor-
ably with experiment and are regularly regarded as band structures of the interacting
system.

The various LDA methods have been used successfully for the computation of bulk
properties of materials, in particular metals, as well as surface or impurity effects.
While their superiority over preceding DFTs such as the Thomas-Fermi approxima-
tion can be explained from the vastly improved treatment of the kinetic energy, the
accuracy of LDA, an effective single-particle theory without adjustable parameters
(“ab initio”) came as a surprise not only to its inventors. Still, LDA fails for impor-
tant classes of materials with strong electronic correlations like La1-xSrxTiO3, which
limits its general predictive power. In the next section we will discuss extensions of
the LDA approach which address this problem.

5.3 LDA+DMFT

Since the LDA uses input from the jellium model, it is not surprising that the resulting
errors are larger for localized than for extended states. One may suspect that both
local correlations and the self-interaction contribute significantly to these errors for
localized orbitals. In fact, self-interaction corrected (SIC-LDA) calculations yield a
much better estimate for the total energy of isolated atoms than plain LDA which can
be attributed to an improved treatment of core states.9 Using a basis with localized

8Conventional MTOs fall off as r−(l+1) for angular momentum l.
9For the total energy of, e.g., Ne atoms, LDA is even inferior to the Hartree-Fock theory (HF).

For ionization energies, however, the agreement with experiment is significantly better for LSDA
than either for LDA or HF with no general improvement from inclusion of SIC (Gunnarsson and
Jones, 1981).
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orbitals, self-interaction corrections can also be applied for transition metal oxides
yielding improved predictions for band gaps and moments (Svane and Gunnarsson,
1990). The important advantage of SIC-LDA over LDA (and the reason we mention
the method here) is that SIC provides a mechanism which allows the solutions to
localize and that it effectively generates a Hubbard-type interaction which may split
occupied and unoccupied states.

A similar effect arises in the LDA+U method which explicitly introduces mean-
field type local interactions between electrons in correlated orbitals of degeneracy M ,
e.g., d orbitals (Anisimov, Zaanen, and Andersen, 1991),

ELDA+U = ELDA +
1

2

∑

mσ 6=m′σ′

(U − Jδσσ′) (nmσ − n̄)(nm′σ′ − n̄) (5.8)

The LDA energy is unchanged in the unpolarized case, when the expectation value
nmσ of the occupancy of each state equals n̄ := 1

2M

∑M
m=1

∑

σ nmσ. Orbital and/or
spin order, however, generically lead to negative contributions of the interaction term
in (5.8) which may outweigh an concurrent increase of the LDA energy and thus
stabilize ordered insulating phases for integer filling. Both interaction parameters U
and J can be estimated from constrained supercell LDA calculations (Gunnarsson,
Andersen, Jepsen, and Zaanen, 1989). Thus, in contrast to plain LDA, the LDA+U
method allows for an “ab initio” modeling of insulating, long-range ordered phases
(e.g., antiferromagnetic or orbital order) within the DFT framework, but still cannot
describe paramagnetic Mott insulators or strongly renormalized quasiparticle states.
Such problems are clearly beyond static effective single-particle theories.

More general approaches which also allow for a microscopic treatment of on-site
correlations have to be formulated in terms of a true many-body Hamiltonian. Ide-
ally, one could treat interactions between electrons in some localized orbitals of an
open shell explicitly (without resorting to static mean-field approximations) and use
LDA for all remaining electron-electron interactions as well as for electron-ion in-
teractions and kinetic energy. In practice, we can at least avoid static mean-field
approximations for the explicitly treated interactions and approximately extract a
tight-binding model from LDA calculations which we then have to correct approxi-
mately for double counting. For this purpose, we interpret the Lagrange parameters
εi of the LDA solution of the Kohn-Sham equations (5.6) for a tight-binding LMTO
basis (Andersen et al., 1986; Jepsen and Andersen, 2000) as defining a band struc-
ture which may be represented in terms of hopping matrix elements (vanishing on
the diagonal: tilm,ilm = 0) and on-site energies,

ĤLDA =
∑

ilm,jl′m′,σ

(

tilm,jl′m′ ĉ†ilm,σ ĉjl′m′,σ + εiln̂ilm,σδilm,jl′m′

)

. (5.9)

Here, the indices i and j label atomic sites, σ labels spin, and l, m, l′, m′ are
orbital indices.10 Up to double counting corrections, we will regard (5.9) as the

10Neither the orbital basis nor the distinction between the index components l and m is unique.
Here, we have adopted the convention that degenerate orbitals share a common value of l, but can
be distinguished by the index m.
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noninteracting part of our model. It is neither possible nor necessary to include all
possible on-site interactions shown in (1.9). Instead, one has to concentrate on terms
which can be treated more accurately in a many-body tight-binding model approach
than in LDA and which dominate the correlation physics missed by plain LDA. In
a minimal extension of the LDA, one may restrict the treatment to contributions of
the density-density type11

Hcorr =
1

2

∑

ilm,l′m′,σσ′

(lmσ)6=(l′m′σ′)

U i
lm,l′m′ n̂ilm,σ n̂il′m′,σ′ . (5.10)

For the application to La1-xSrxTiO3, we will only include on-site interactions within
the threefold degenerate Ti t2g orbitals, i.e., restrict the sum in (5.10) to i = iTi

and l = l′ = lt2g
. Furthermore, we crudely approximate intra-orbital and interorbital

electron-electron interaction by a common mean parameter, i.e.,

U i
lm,l′m′ = UδiiTi

δll′δllt2g
. (5.11)

The parameter U may be approximately calculated in constrained supercell LDA
calculations (Gunnarsson et al., 1989) or estimated from experiment, e.g., high-energy
spectroscopy. Note that the LDA estimate depends both on the particular basis set
used in LDA and on the selection of interacting orbitals: U decreases if more orbitals
(e.g., the Ti 3d eg orbitals) are considered as noninteracting and are thus allowed to
participate in screening. In order to avoid double counting, one should in general
take into account that the Coulomb interaction (5.11) is already contained in LDA
in some averaged way. A guess for the corresponding contribution has been derived
from the atomic limit (Anisimov, Poteryaev, Korotin, Anokhin, and Kotliar, 1997),

ELDA
corr =

1

2
Unt2g

(nt2g
− 1) , (5.12)

where nt2g
denotes the total occupation of the correlated Ti 3d t2g orbitals and which

gives rise to a shift of the on-site potential,

∆εiTilt2g
= U(nt2g

− 1

2
) . (5.13)

We point out that the parabolic interpolation of atomic energies for fractional occu-
pation number nt2g

inherent in (5.12) and (5.13) is unphysical, at least for nt2g
< 1

(where the contribution (5.12) becomes negative). Therefore, the Hartree estimate
EHartree

corr = Unt2g
(M − 1/2)/(2M) (for orbital degeneracy M) might be considered as

an alternative.12 We will in the following consider the Hamiltonian

ĤLDA+corr = Ĥ0
LMTO + U

∑

i′,mσ,m′σ′

(mσ 6=m′σ′)

n̂
t2g

i′mσn̂
t2g

i′m′σ′ , (5.14)

11It is also possible to include exchange interactions analogous to the J term in (5.8) on equal
footing (Zölfl, Pruschke, Keller, Poteryaev, Nekrasov, and Anisimov, 2000; Held, Keller, Eyert, Voll-
hardt and Anisimov, 2001) which may lead to further corrections for LDA at the cost of destroying
SU(2) symmetry and introducing additional parameters.

12For the calculations presented in this chapter, the double counting correction ∆ε will be irrele-
vant (see below).
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where i′ only sums over Ti sites and the double-counting corrected LDA Hamiltonian
is assumed as

Ĥ0
LDA = ĤLMTO − U(nt2g

− 1

2
)
∑

i′,mσ

n̂
t2g

i′mσ . (5.15)

In lack of exact methods for the solution of the general multi-band Hubbard model,
approximative solutions are needed just like for pure model calculations. A treatment
within the DMFT seems natural and appropriate since it treats the local dynamics
induced by the additional local interactions exactly and was also the first choice his-
torically (Anisimov et al., 1997). Lichtenstein and Katsnelson (1998) used DMFT, the
fluctuation-exchange approximation (FLEX), and the Hubbard-I approximation al-
ternatively and named the general approach LDA++. Drchal, Janǐs, and Kudrnovský
(1999) combined FLEX with the coherent potential approximation (CPA) for the
inclusion of disorder effects.

The DMFT solution of (5.14) is best formulated in reciprocal space, where Ĥ0
LDA

has the matrix elements
(
Ĥ0

LDA(k)
)

qlm,q′l′m′
=
(
ĤLDA(k)

)

qlm,q′l′m′
− δqlm,q′l′m′δql,qTilt2g

U(nt2g
− 1

2
) . (5.16)

Here, q is an index of the atoms in the elementary unit cell. Generalizing from the
1-band Bravais lattice case discussed in subsection 1.2.3, the lattice problem can be
mapped to a multi-band SIAM.13 Now, on-site lattice Green function G, impurity
Green function G, and self-energy Σ are matrices where each index denotes an orbital
within the unit cell, α ≡ (q, l,m). The k integrated lattice Dyson equation and the
impurity Dyson equation read for (complex) frequency z:

Gσ
αα′(z) =

∫
dk

VB

[

zδα,α′ −
(
H0

LDA(k)
)

αα′
− Σσ

αα′(z)
]−1

(5.17)

[
Gσ
αα′(z)

]−1
=

[
Gσαα′(z)

]−1 − Σσ
αα′(z) , (5.18)

where [. . . ]−1 denotes matrix inversion (in α, α′). The impurity (or cluster) problem,
expressed in mixed notation using imaginary time τ and index n for Matsubara
frequency iωn takes the form:

Gσn
αα′ = − 1

Z

∫

D[ψ]D[ψ∗] ψσnα ψσn∗α′ eA[ψ,ψ∗,G] , (5.19)

with the action

A[ψ, ψ∗,G] =
∑

n,σ,α,α′

ψσn∗α

[
Gσnαα′

]−1
ψσnα′

− U

2

∑

m,σ,m′,σ′

(mσ)6=(m′σ′)

β∫

0

dτ ψσn
∗

qTilt2g
m ψ

σn
qTilt2g

m ψ
σ′n∗
qTilt2g

m′ ψσ
′n

qTilt2g
m′ . (5.20)

13In general, the resulting problem appears rather as a finite cluster with on-site interactions and
frequency dependent on-site “energies” and “hopping terms” very similar to the systems studied
in DCA (cf. App. A.3). Only in absence of hybridization between different orbitals the DMFT
mapping leads to a conventional multi-band impurity without mixing terms. Since we will neglect
small hybridization terms found in the LDA calculations for La1-xSrxTiO3 , however, the cluster
will indeed reduce to a single impurity in our calculations.
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Only in the last term in (5.20) we have given up generality and thus had to split up
the compound orbital index α to single out the strongly correlated Ti 3d t2g orbitals.

Both experiment and our LDA calculations (see Sec. 5.4) indicate that the low-
temperature properties of La1-xSrxTiO3 are dominated by Ti 3d t2g states which
hybridize only weakly with other orbitals. Since these states are degenerate, the
LDA Hamiltonian is diagonal in this subspace, i.e.,

(
Ĥ0

LDA(k)
)

qTilt2g
m,q′l′m′

= Ĥ0
t2g

(k) δqTilt2g
m,q′l′m′ . (5.21)

We can thus restrict the explicit treatment to the t2g subspace, in which G, G, and
Σ become diagonal. Due to the special choice U = V , J = 0, the DMFT problem is
then equivalent to a single-band Ising-spin-5/2 Hubbard model, i.e., the derivations
of subsection 1.2.3 apply when the replacement σ → (σ,m) is made in (1.30)-(1.35).
In particular, the LDA input reduces to the t2g DOS (which is supplemented by the
estimate for U from constrained supercell LDA calculations).

In this work, we solve the impurity problem using (multi-band) QMC and re-
fer to the resulting general method as LDA+DMFT(QMC). This distinguishes our
calculations of photoemission spectra for La1-xSrxTiO3 from earlier work, where an-
alytic approximations have been used for the solution of the impurity problem, i.e.,
LDA+DMFT(IPT) (Anisimov et al., 1997) and LDA+DMFT(NCA) (Zölfl et al.,
2000). The LDA+DMFT(QMC) method was first used by Katsnelson and Lichten-
stein (2000) for ferromagnetic iron and applied for the calculation of PES of Sr2RuO4

by Liebsch and Lichtenstein (2000).

5.4 Results for La1-xSrxTiO3

In this section, we present numerical results of the LDA+DMFT(QMC) method ap-
plied to La1-xSrxTiO3 for slight doping x = 0.06 which drives the system just outside
the antiferromagnetic phase and into a paramagnetic strongly renormalized phase.
For notational convenience, we will in the following often omit units. Unless stated
otherwise, energies are measured in eV, frequencies in eV/~, densities of states in
eV−1 (or ~ eV−1), temperatures in eV/kB, imaginary times in ~ eV−1, and conduc-
tivities in arbitrary units.

5.4.1 Density of States and Photoemission Spectra

Since the predominant effect of the substitution of La by Sr in La1-xSrxTiO3 is a
reduction of the Ti 3d t2g band filling while the shape of this band remains essentially
unchanged,14 the LDA spectra were calculated for pure LaTiO3. Furthermore, the
orthorhombically distorted crystal structure of this material was replaced by a cubic
unit cell. As discussed also in Sec. 5.1, the primary resulting error is an overestimation
of the effective bandwidth. The density functional theory problem was solved using

14This working hypothesis was later checked by comparison to LDA spectra obtained for doping
x = 0.5.
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Figure 5.4: Upper part: LDA DOS ρ(ε) for |ε| < 10 eV. The band is clearly split into
contributions with O-2p and Ti-3d character, respectively. Lower part: partial Ti-3d LDA
DOS. The t2g contribution (solid line) forms the peak at the Fermi level, the eg contribution
(dashed lines) is primarily located above.

the Stuttgart TB-LMTO-ASA program in version 4.7 (Jepsen and Andersen, 2000)
within the basis set Ti(4s, 4p, 3d) La(6s, 6p, 5d) O(2s, 2p) at a Wigner Seitz radius
of 2.37 atomic units for Ti. The average on-site interaction for t2g orbitals was
calculated as U ≈ 4.2 eV which contrasts with an estimate of U ≈ 3.2 eV previously
obtained within LMTO-ASA in orthogonal representation (Solovyev, Hamada, and
Terakura, 1996). Since LDA is a ground state method, its numerical results apply to
temperature T = 0.

The low-energy part (measured from the chemical potential) of the resulting full
LDA DOS is shown in the upper part of Fig. 5.4. In comparing to the lower part of
Fig. 5.4, which displays only the Ti 3d contribution (note the different scales), split
up into t2g and eg parts, we find a situation typical of early15 transition metal oxides:
The band at about -8 to -4 eV corresponds to the completely filled O 2p bands, while
the Ti 3d band is located near the Fermi level. Very importantly, the t2g orbitals
account for nearly all the weight of the peak at the Fermi energy and have very small
overlap with other bands. Therefore, we can disregard all t2g contributions to the
DOS below about -1 eV. Then the t2g band has a total width (edge to edge) of about
2.8 eV with a root-mean-square spread in the energy distribution of 0.65 eV. Double
counting corrections not yet included in the plot should move the bottom of the t2g
band down compared to the rest by at most 2 eV. We note that the O 2p bands also
lead to some contribution near the Fermi energy which will also be neglected in the

15Here, “early” refers to the position of the transition metal in the periodic table of elements, i.e.,
denotes a small number of valence d electrons per atom.
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Figure 5.5: a) Partial Ti 3d t2g LDA+DMFT(QMC) DOS for T = 0.1 eV and U = 3.2
eV in comparison to LDA. b) Partial Ti 3d t2g LDA+DMFT(QMC) DOS for T = 0.1 for
different interaction strengths. Inset: magnified view for small energies (including LDA).

following except when we discuss inverse photoemission (see Fig. 5.14).
For the solution of (5.14) for La1-xSrxTiO3 (x = 0.06) within the DMFT, the self-

consistency equations were iterated to convergence using QMC at a relatively high
temperature kBT = 0.1 eV, i.e., T ≈ 1160 K and with a discretization ∆τ = 0.25eV−1.
Here, the filling was fixed to 1−x by adjusting the chemical potential (set to 0 in the
resulting spectra). Then, 40 measurements for the imaginary-time Green function
G(τi) on the discretized grid were performed with fixed self-energy. Finally, real-time
partial t2g spectra were obtained using Sandvik’s MEM program. As seen in Fig. 5.5a,
the explicit inclusion of a finite on-site interaction U = 3.2 eV changes the shape of
the spectrum near the Fermi energy dramatically: in addition to the quasiparticle
peak, a remnant of the noninteracting LDA DOS, lower and upper Hubbard bands
appear. The spectral density A(ω) right at the Fermi energy is almost pinned to
its noninteracting value, even at this comparatively high temperature. The result of
corresponding calculations is shown in Fig. 5.5b also for U = 4 eV, U = 4.25 eV,
and U = 5.0 eV. The spread of interaction values 3.2 eV . U . 5.0 eV reflects the
intrinsic uncertainty in the LDA estimate for U . Clearly, the quasiparticle weight
decreases with increasing U . The relatively large difference between the spectra
obtained for U = 4.0 and U = 4.25 indicates significant intrinsic uncertainties which
we will discuss in subsection 5.4.2.

We compare our QMC result for U = 4.0 with approximate solutions of the
DMFT problem in Fig. 5.6 at the same temperature T = 0.1 eV, i.e., T ≈ 1160 K.
Most prominently, IPT misses the quasiparticle peak at this temperature since this
approximation underestimates the associated Kondo temperature [cf. related obser-
vations for a three-band Hubbard model with Bethe DOS by Kajueter and Kotliar
(1997)]. Moreover, the tails of the IPT spectral functions appear to have too much
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Figure 5.6: Partial Ti 3d t2g LDA+DMFT(X) DOS for T = 0.1 eV and U = 4 eV for
different approaches X for the impurity problem. Also shown is the LDA+DMFT(IPT)
result for T = 0.008 eV.

weight. When IPT is applied for lower temperatures T ≈ 80 K, the quasiparticle
peak is retained, but with far too small weight; the overall agreement with QMC re-
mains fair. NCA comes off much better in comparison. However, this approximation
underestimates both the weight and the width of the quasiparticle peak, cannot re-
solve the lower Hubbard band (but produces a shoulder too close to the quasiparticle
peak instead), and shows strong deviations in the shape of the upper Hubbard band.
The multi-band generalizations of NCA will usually fail at even higher temperatures
than conventional NCA due to violations of proper time order in processes involving
several orbitals. From the numerical comparison we conclude that the method of
solution of the DMFT equations does matter.

In photoemission spectroscopy (PES), the surface of a probe is irradiated with
photons of a well-defined energy above a threshold given by its work function. The
intensity distribution of emitted photo electrons as a function of electron energy
and angle (with energy and angle of incident photons as well as temperature, pres-
sure etc. as parameters) is then characteristic of the material.16 Conventionally, a
distinction is made between X-ray photoemission (XPS, previously also called elec-
tron spectroscopy for chemical analysis, ESCA) and ultraviolet photoemission (UPS)
depending on whether the photons originate from X-ray tubes or helium discharge
lamps; more recently, however, synchrotrons provide for highly luminous sources of
photons with extremely narrow energy distribution which is continuously tunable
over both the XPS and UPS energy range. Within the “sudden approximation” (no

16While Einstein explained the photo effect in 1905 in terms of quantized radiation, i.e., photons
(Nobel prize 1921), its application as an analysis tool for chemical and electronic structure of solids
is due to pioneering work by Siegbahn and coworkers carried out since the fifties (Nobel prize 1981).
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interaction of the outgoing photo electron with the remaining hole) and second or-
der response theory one obtains an expression of the Fermi golden rule form for the
steady photo current (Schaich and Ashcroft, 1971; Bansil and Lindroos, 1999),

I(Ei, ~ω) =
2πe

~

∑

i,f

∣
∣〈ψf |V̂ |ψi〉

∣
∣
2
δ(Ef − Ei − ~ω) . (5.22)

Here, ψi (ψf ) are initial (final) states with energy Ei (Ef ) of the semi-infinite solid,

V̂ = −e(p̂ ·A + A · p̂)/(2mc) is the interaction with the electromagnetic field, and
full initial as well as empty final states have been assumed. For localized electron
orbitals, both the dipole selection rules and the transport to the surface determine the
matrix elements 〈ψf |V̂ |ψi〉. Neglecting both its structure and assuming a featureless
continuum of final states one can draw a direct connection between PES and the
single-particle spectrum A(E) = − 1

π
ImG(E) (at temperature T ):

I(E) ∝
∞∫

−∞

dE ′A(E ′)
1

1 + e−(E′−µ)/(kBT )
R∆(E − E ′) +B (5.23)

Here, R∆(E − E ′) = e−(E−E′)2/(2∆2)/
√

2π∆2 is a Gaussian broadening function asso-
ciated with the experimental resolution,17 and B a background contribution arising
from photo electrons which have been inelastically scattered within the solid. We
stress that (5.23) is at best a crude approximation for contributions arising from
orbitals within a few top layers of the material. Photo electrons generated in the
bulk cannot escape since the typical mean free path for photo electrons in the energy
range of 10 to 100 eV in crystals is only a few nanometers. Within such a close
distance to the surface, however, surface effects may be important, at least quantita-
tively. Partially, the importance of final-state and transport effects can be assessed
by measuring the same spectra using different incident photon energies.

In Fig. 5.7, we compare theoretical PES calculated via (5.23) for La1-xSrxTiO3

with a broadening width ∆ = 0.3 eV (and B = 0) with two experimental results.
In one experiment, polycrystalline samples of LaTiO3.03±0.01, characterized by ther-
mogravimetry analysis, were cooled down to T = 80 K, scraped in situ, and ir-
radiated with photons of the energy hν = 48 eV. Here, the stated resolution is
0.2−0.3 eV (Fujimori, Hase, Namatame, Fujishima, Tokura, Eisaki, Uchida, Takega-
hara and de Groot, 1992). In a more recent experiment, PES for the nominally
same material grown by the floating-zone method were measured at 23 K and 150
K using a He discharge lamp (hν = 21.2 eV) with a nominal resolution of 30 meV
(Yoshida et al., 2002).18 Qualitatively, good agreement is observed for U = 5 eV, the
strongest interaction value being shown in Fig. 5.7: both the peak position at −1.5
eV . E . −1 eV and the suppression of spectral weight near the Fermi energy are

17The spectra are also Lorentzian broadened by the finite lifetime of the final states, i.e., the
decay of the photo holes left behind in the bulk.

18Note that here the authors claim to see antiferromagnetic order even for the doped system with
TN ≈ 112 K. Thus, only the measurement at T = 150 K corresponds to the paramagnetic phase
modeled in our simulations.
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Figure 5.7: La1-xSrxTiO3 photoemission spectra (x=0.06): LDA+DMFT(QMC) estimates
for different U (QMC simulations at T = 1160 K, Fermi function for T ≈ 0 K) in comparison
with experiments at T = 80 K (Fujimori, Hase, Namatame, Fujishima, Tokura, Eisaki,
Uchida, Takegahara and de Groot, 1992), T = 23 K (a), and T = 150 K (b) (Yoshida
et al., 2002). The agreement with experiments improves with increasing U (used in the
simulation).

predicted correctly. Although the relative weight originating from the quasiparticle
peak is computed to be almost a factor of 5 higher than seen experimentally, the
improvement over LDA is impressive. The value of U ≈ 5 eV which best reproduces
the experimental spectra is a bit higher than estimated from LDA, but still within
the error range, in particular when the reduction of band width by orthorhombic
distortion is considered. The remaining differences may be due to disorder,19 to a
reduced hybridization at the surface, to deficiencies of the theoretical PES treatment,
to simplifications inherent in the electronic model, to the too high temperature used
in the QMC cimulations, and to numerical errors related to the QMC and MEM
treatment of the DMFT problem. This last technical point will be addressed in the
following subsections where we also leave the ground of published collaborative work.

We point out that due to the high spectral weight present in ρ(ε) just above
the Fermi energy (cf. Fig. 5.5), the spectral weight near the Fermi energy of the
resulting PES is very sensitive to the exact position of the Fermi energy. In fact,

19Note that, while the experimentally realized form of doping with 3% O should correspond to 6%
doping with Sr, the materials are clearly not fully equivalent electronically. In particular, disorder
should have much stronger effects for LaTiO3.03±0.01.
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Figure 5.8: Correction of erroneous shift of the chemical potential in (5.23) to -0.1 eV. The
“old” IPT PES (U = 2 eV, T = 125 K) published in (Anisimov et al., 1997) is incorrect,
i.e., does not correspond to the DOS computed in the paper (see inset). A corrected curve
(“new”) shows a much more prominent peak at the Fermi level. A recalculation of the
QMC PES for U = 4 eV and T = 1160 K shown in our preprint (cond-mat/0005207v1)
leads to similarly significant changes.

an error present in the broadening program [i.e., an implementation of (5.23)] used
by Anisimov’s group, i.e., an erroneous shift of the chemical potential by one grid
point, led to strong deviations for the PES when compared to a new (correct) code
written as part of this thesis. This observation necessitated new calculations and
explains the differences between a first preprint (cond-mat/0005207v1) and the actual
publications (Nekrasov, Held, Blümer, Poteryaev, Anisimov, and Vollhardt, 2000;
Held, Nekrasov, Blümer, Anisimov, and Vollhardt, 2001) of the work presented in
this subsection. While in earlier LDA publications the problem should have been
virtually unobservable due to a finer frequency grid, it clearly shows up in the first
LDA+DMFT publication (Anisimov et al., 1997). This is seen in Fig. 5.8: both in
IPT for Ueff = 2 eV, T = 125 K and the QMC calculation for U = 4.0 eV, T = 1160
K the weight of the peak at the Fermi energy was underestimated by about a factor
of 2.

5.4.2 Influence of Discretization Errors

While the QMC algorithm used for the treatment of the LDA+DMFT problem in
this chapter can in principle yield results of arbitrary precision in the limit of infinite
computing resources, it is clear that statistical noise, incomplete convergence of the
self-consistency cycle and the Trotter discretization error ∆τ in conjunction with
approximations made for the Fourier transform (see chapter 3) may impact the results
of actual calculations. Even worse, for a finite discretization ∆τ , the incomplete



262 5. Realistic Modeling of Strongly Correlated Materials

information on the imaginary axis has to be supplemented by a maximum entropy
assumption in order to obtain real-frequency spectra. Obviously, the qualitative
importance of these errors depends on the final quantity that is calculated. For
the PES shown in the previous subsection, the broadening procedure renders details
of the initial spectra relatively unimportant. In contrast, the computation of optical
conductivity data which we will present in subsection 5.4.3 involves comparisons with
the noninteracting DOS and is far less well conditioned: in the computation of Σ(ω),
sums can essentially cancel so that the relative error explodes. Thus, reliable results
for σ(ω) can only be expected if both the QMC procedure and the MEM algorithms
fulfill high standards.

Although the particular algorithm for analytic continuation of imaginary-time
QMC data used for obtaining the spectra shown in Fig. 5.5 yields spectra compatible
with the measured data, it takes improper account of the associated errors. Conse-
quently, the spectra selected by the algorithm may not be the best maximum entropy
spectra. In extensive studies, we implemented more accurate MEM schemes (still us-
ing Sandvik’s code), which we will characterize below, and also tested a variety of
default models.20 Still, none of the methodological improvements yielded significantly
more reliable spectra and derived self-energies. In order to check for convergence, to
improve on the statistical accuracy, and to generate enough input data for Jarrell’s
fully consistent maximum entropy program, we performed additional longer QMC
simulations for the same parameter sets. Again, no general improvement was found
using the variants of Sandvik’s scheme. Jarrell’s program failed to yield sensible
spectra at all. In our view, the only likely explanation for the fact that an improved
treatment of statistical errors did not in general lead to improved spectra is that
statistical errors are not the important ones; instead they are dominated by sys-
tematic errors. After having established convergence and well thermalized Ising spin
ensembles in the QMC simulations, the only remaining candidate as a source for such
systematic errors is the finite imaginary-time discretization ∆τ in connection with
the empirical “smoothing” scheme employed for the discrete Fourier transformation.
As discussed in Sec. 3.4, this scheme leads to large errors near a metal-insulator tran-
sition in the half-filled single-band case. More generally, one has to expect problems
also in the present multi-band case with noninteger filling when correlations become
strong. While we cannot test for the influence of the “smoothing” trick alone with-
out rewriting the QMC program, the total systematic error including the unavoidable
Trotter error may be estimated from changing the value of ∆τ , which we will do in
the remainder of this subsection.

20In the present multi-band case, the choice of a nontrivial appropriate default model is much
more difficult than in the symmetric single-band case covered in Sec. 3.8. As an alternative to the
previously used flat default model (energy range -20 eV ≤ ω ≤ 20 eV with a grid of 0.1 eV) we used
Gaussian default models of various widths and with the symmetry axis approximately matched to
the band center as well as tighter models derived from a rigid-band assumption which becomes good
in the atomic limit. While it is relatively easy to suppress the unphysically long negative-energy
tails visible, e.g., in Fig. 5.5 with such default models, a too tight cut-off at high frequencies is
likely to lead to artifacts in the main part of the spectrum. For an improved treatment, it seems
promising to use QMC estimates for double and triple occupancy for fine-tuning the default model
for each particular data set.
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Figure 5.9: Imaginary time Green function G(τ) for ∆τ = 0.25 (crosses) or ∆τ = 0.167
(squares). The lines connecting the data points correspond via (1.55) to the spectra shown
in Fig. 5.5 and Fig. 5.12, respectively. The curve “U = 0” shows the bare LDA estimate
for G(τ) for comparison.

In Fig. 5.9 we compare the imaginary-time Green function G(τ) as previously
calculated for ∆τ = 0.25 with the result of new measurements for ∆τ = 0.167, i.e.,
with the number of time slices increased from 40 to 60. This step requires a 3-4
fold increase of computer time and should eliminate roughly between a third (for a
linear extrapolation law in ∆τ) and half (for a quadratic extrapolation law) of the
original systematic error. For “weak” interaction, i.e., for U = 3.2 of the order of the
bandwidth, differences upon reducing the discretization error are hardly detectable on
the scale of the figure (while being significant at least for 1 . τ . 2). In contrast, the
improved accuracy clearly changes the results for U = 4.25 and, particularly, U = 5.
It is important to realize that statistical errors are of the order of the linewidths (of
the thin lines) and that the full systematic errors are expected to equal 2 or 3 times
the observed differences. Thus, systematic errors exceed statistical errors by more
than an order of magnitude which fully explains all the problems encountered with
maximum entropy analytic continuation described above.21 The solid lines connecting
the ∆τ = 0.25 data points shown in Fig. 5.9 have been obtained by applying (1.55)
to the spectra shown in Fig. 5.5; practically indistinguishable curves were obtained,
however, by also using “backward” analytic continuation (1.55) for spectra obtained
in variations of the maximum entropy method. Physically, the reduced values for
G(τ) at τ ≈ β/2 point towards decreasing spectral weight near the Fermi energy, i.e.,

21We note that the statistical error of the self-energy effectively gives rise to a systematic error
for the measurements of G(τ) since the self-energy defining the bath green function was kept fixed
for all measurements. This error also exceeds the statistical error calculated in the measurements
but is (for U = 4.25 or U = 5.0) well below the ∆τ error.
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Figure 5.10: Imaginary part of self-energy for ∆τ = 0.25 (crosses) or ∆τ = 0.167 (squares).
Inset: Extrapolation ∆τ → 0 of the value at the first Matsubara frequency ω1 = πT
assuming the best case of a quadratic law. Lines are guides to the eye only.

to an increase of correlation effects.
The discretization error leads to even more prominent changes in the imaginary

part of the self-energy on the imaginary axis Im Σ(iωn) shown in Fig. 5.10. On the
one hand, the Nyquist cutoff frequency where the computed self-energy unphysically
vanishes (instead of decaying like 1/ω) is pushed to higher frequencies; on the other
hand, the absolute value of Im Σ increases significantly at small frequencies upon
decreasing ∆τ . The latter tendency is, again, a sign that correlation effects are
stronger than originally estimated. In fact, the quadratic extrapolation suggests that
the quasiparticle weight for U = 5 is Z ≈ 0.15 rather than the value Z ≈ 0.21
measured for ∆τ = 0.25.

Due to lack of computing resources in the final stages of this work we could
not obtain sufficient data for a controlled application of Jarrell’s MEM program.
It would also seem more efficient to eliminate systematic errors first before taking
details of the statistical error distribution too seriously. Instead, we continued to
use the previously applied scheme: for a data set of 50 . N . 100 measurements
(bins) of Gσ

α(τi) for band index α ∈ {1, 2, 3}, spin σ ∈ {↑, ↓}, and time slice 0 ≤
i ≤ Λ = 60, correlations between measurements at different τi and between different
spins at the same time slice are neglected when computing averages Gav

α (τi) and
the associated errors ∆Gα(τi) for each band separately.22 Each band is analytically

22Here, a more proper treatment would at least average over spins before calculating errors since
the spin-averaged quantities fluctuate much less. In fact, the cleanest approach at this point would
involve averaging over spins and orbitals at each time slice before starting the error calculations
since we seek information about the paramagnetic phase. On the other hand, the increased error
bars generated by the procedures outlined in the text partially mimic systematic errors and can
thus limit the impact of unphysical ∆τ errors on the resulting spectra.
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Figure 5.11: Illustration of the MEM strategy “b” used throughout this chapter: data sets
(here for U = 4.25) for each degenerate t2g band are analytically continued independently to
the real axis (thin lines); the partial spectra are then averaged (thick lines). For enhanced
clarity of the plot, the ordinate has been shifted for ∆τ = 0.25 by 0.2.

continued independently. An average over all three bands then defines the final result
for each parameter set. As illustrated in Fig. 5.11 for U = 4.25 (and β = 10), the
partial spectra (thin lines) show substantial deviations from each other and from the
average (thick lines) for both ∆τ = 0.25 and ∆τ = 0.167. The observed differences
may be regarded as a lower bound on the intrinsic errors. While in general these
deviations are not significantly reduced for our new data, the accuracy at small
frequencies |ω| . 0.5 seems improved.

A comparison of the old and new spectra for U = 3.2, U = 4.25, and U = 5.0
is presented in Fig. 5.12. In addition to the data for ∆τ = 0.25 (same as shown
in Fig. 5.5) and data for ∆τ = 0.167 computed according to the scheme detailed
in the last paragraph and denoted as “b”, a tighter fit was obtained for comparison
by averaging the data over all bands first and applying MEM to the resulting single-
band problem (“a”). We stress that the new spectra still leave room for improvement
(even for fixed ∆τ = 0.167); still, the observed changes, i.e., the shift in peak positions
and the reduced spectral weight at small frequencies for large U represent genuine
improvements over the previously obtained estimates. Unless specified otherwise, we
will in the following show results derived from the set “b” of spectra.

Improved Results Figure 5.13 depicts photoemission spectra derived from the
new spectral functions with ∆τ = 0.167 (thick lines) in comparison with those already
shown in Fig. 5.5. For the new estimates we also used the temperature T = 1160 K
in the Fermi function in order to fulfill the sum rule: when the spectra are properly
normalized, the integral over the PES computed according to (1.55) equals the band
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Figure 5.12: Spectra (interacting DOS): new results for ∆τ = 0.167 using variations of the
MEM technique (see text) in comparison to the spectra for ∆τ = 0.25 shown in Fig. 5.5.

filling to very high accuracy.23 The increased accuracy makes the peaks at the Fermi
energy less prominent; this correlation effect would appear even stronger had both
sets of curves been calculated using the same Fermi function. Furthermore, the shape
and position of the lower Hubbard bands are modified and the peak positions become
more systematic as a function of U .

The upper part of the interacting DOS is in principle also observable experi-
mentally via inverse photoemission, which we model by formally applying (5.23) for
negative temperatures. In this case, the noninteracting eg bands situated above the
LDA Fermi energy become very important as is evident in Fig. 5.14. Here, we have
used U = 5.0 and ignored a possible shift of the Fermi energy, which would also shift
the t2g band relative to the remainder of the spectrum. The total PES includes a
contribution associated with the O 2p band which then fills the gap in the t2g con-
tribution at about 1 eV. In lack of true inverse PES experiments, we compare to

23The estimates shown in Fig. 5.7, using T ¿ ∆ω = 0.1 eV in the Fermi function, corresponded
to significantly lower band fillings. Therefore, they had been rescaled in (Nekrasov et al., 2000).
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results of X-ray absorption spectroscopy (XAS) measurements. In this technique,
incident X-ray photons excite core electrons which, in a crude approximation, give
rise to the inverse photo effect.24 In Fig. 5.14, we have adjusted the intensity scale
of the experimental curves (Abbate et al., 1991) to be of the order of magnitude of
the theoretical curves and have matched the (experimental) absorption edge with the
(calculated) Fermi energy. While the XAS peak observed at 2 eV . ω . 5 eV is in
good correspondence with the combined contributions of the upper Hubbard band
and the uncorrelated eg band, the low intensity at the Fermi energy seems incom-
patible with the theory. Here, the situation is similar to PES, where the theory also
predicts more weight near the Fermi level than is seen experimentally.

5.4.3 Optical Conductivity

Another interesting spectral property is the optical conductivity σ(ω) which can
be determined experimentally via measurements of the reflectivity and a Kramers-
Kronig transformation or, more directly, by transmission experiments (see Sec. 4.1).
Within the DMFT, the diagrammatic expression for σ(ω) reduces to a bubble dia-
gram which can be evaluated given the local self-energy and the quantity ρ̃(ε) defined
in (2.2). The latter deviates from the noninteracting DOS ρ(ε) by a factor 〈|vk|2〉(ε)
which takes the nonconstant Fermi velocity within the Brillouin zone into account
(see chapter 4). While it should be possible to compute ρ̃(ε) within LDA, this im-
portant ingredient for computations of σ(ω) has not (yet) been obtained within our
collaboration. In this situation, the general formalism developed in Sec. 2.3 pro-
vides for a reasonable starting point by interpreting the LDA DOS ρLDA(ε) as the
defining property of an isotropic tight-binding model in d = ∞. For this model,
one can then compute ρ̃(ε) and thereby σ(ω) on the basis of estimates for Σ(ω) de-
rived from the QMC/MEM spectra. For the original three-dimensional cubic model,
this method introduces an additional approximation which (like the DMFT) also be-
comes exact in high dimensions. This is illustrated in Fig. 5.15a for the t− t′ lattice
with a∗ = −0.3333 (cf. Fig. 2.5 and subsection 4.5.3). Here, the exact evaluation
of 〈|vk|2〉(ε) in three and four dimensions (thick lines) is seen to agree well with the
result of an application of (2.62) to the exact finite-dimensional DOS (thin lines), in
particular in the region ε . 2 which comprises about 95% of the DOS. The appli-
cation of this d = ∞ approach is also far more accurate than assuming a constant
〈|vk|2〉(ε) ≡ 1 (which would not be correct for any finite-dimensional lattice).

In Fig. 5.15b we can see that our formalism, i.e., the application of (2.62) to the
LDA DOS indeed yields an estimate for 〈|vk|2〉(ε) which vanishes at the band edges as
required physically.25 Consequently, ρ̃(ε) is suppressed at the band edges compared
to ρLDA(ε). The suppression of peaks is also a realistic effect which, however, might

24Clearly, matrix elements and selection rules become even more important for this second order
process (in the number of electron-photon vertices) than for the regular PES discussed in subsection
5.4.1.

25In order to correct for the bandwidth of 0.65 (square-root of the variance of the LDA energy
distribution) instead of unity, the expressions for 〈|vk|2〉(ε) and ρ̃(ε) stated in Sec. 2.3 have to be
multiplied by the squared inverse bandwidth. Only then is the average hopping distance given by
the norm of ρ̃(ε).
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comparison with a computation via (2.62) from the DOS (thin lines). b) LDA t2g DOS
ρ(ε) (solid line) for La1-xSrxTiO3, derived energy-dependent d = ∞ expectation value of
the squared Fermi velocity 〈|vk|2〉(ε) (inset), and ρ̃(ε) = 〈|vk|2〉(ε) ρ(ε) (dashed line in main
figure). The average squared hopping distance is 1.10.

be less pronounced in finite dimensions. Assuming that the LDA spectrum used
throughout this chapter is correct, we would therefore expect the true curve for ρ̃(ε)
to lie between both curves shown in the main part of Fig. 5.15b. Thus, we will for
comparison also compute σ(ω) for constant 〈|vk|2〉 and regard the deviations as an
upper bound to intrinsic errors.

As a set of intermediate results, we show estimates for the imaginary part of the
self-energy on the real axis, Im Σ(ω) in Fig. 5.16. These were calculated by numerical
inversion of the lattice Dyson equation (1.30) using a program written as part of
this thesis. Our algorithm (see also subsection 4.6.1) implements a modified Newton
search with underrelaxation, i.e., the step width is reduced by a factor of 0.5 compared
to the usual Newton method.26 Note that the Dyson equation is local27 in ω and that
the Jacobian needed for the Newton method (with 2 dimensions corresponding to the
real and imaginary parts, respectively) can easily be computed numerically. When
no causal solution exists for Σ(ω0) given G(ω) at an isolated frequency point ω0, the
program issues a warning and interpolates the solution using the adjacent grid points:
Σ(ω0) =

(
Σ(ω0 −∆ω) + Σ(ω0 + ∆ω)

)
/2.

26Analogous to the procedure used in Sec. 4.4, the MEM spectra (with a frequency resolution
of ∆ω = 0.1) have been interpolated (here to ∆ω = 0.02) before performing the Kramers-Kronig
transformation and inverting the Dyson equation.

27By “local” we here mean that Σ(ω0) is for fixed noninteracting DOS only a function of ω0

and the complex quantity G(ω0). Therefore, the inversion of the Dyson equation can be done
independently for different frequencies ω0. The relation between Σ(ω) and A(ω) = − 1

π ImG(ω) is
not local, however, since the Kramers-Kronig transform relates ReG(ω0) to ImG(ω) for all ω.
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Figure 5.16: Imaginary part of the self-energy on the real axis computed from the MEM
spectra shown in Fig. 5.12. The variations “a” and “b” of the MEM scheme are explained
in the discussion of Fig. 5.12.

Significant changes are found in the results for Σ(ω) as shown in Fig. 5.16 when
the discretization is reduced from ∆τ = 0.25 to ∆τ = 0.167. In particular, the
shapes of Σ(ω) near the Fermi energy come closer to the expected quadratic form
for the more accurate data corresponding to ∆τ = 0.167. In comparison, differences
observed from variations of the MEM scheme (“a” and “b”) are small except near
singularities where the precise value of Σ is less important.28

The corresponding estimates for σ(ω) are presented in Fig. 5.17 on a semiloga-
rithmic scale, using the lattice input ρ̃(ε) from Fig. 5.15b. Evidently, the ∆τ effects
are important quantitatively; in particular, peak positions shift and the Drude peak
decreases for ∆τ = 0.167 (and U ≥ 4.25). Thus, correlation effects are treated more
adequately at lower ∆τ .

Figure 5.18, the main result of this subsection, shows our best estimate for the

28For U = 5.0, no reliable causal solution Σ(ω) was found using the spectrum obtained in MEM
scheme “a” due to numerical errors.
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Figure 5.17: Optical conductivity σ(ω) for La1-xSrxTiO3 using the d = ∞ estimate for
ρ̃(ε) depicted in Fig. 5.15b. The variations “a” and “b” of the MEM scheme are explained
in the discussion of Fig. 5.12.

real part of the optical conductivity σ(ω) for U = 3.2, U = 4.25, and U = 5.0
(thick lines) at T = 0.1 (using set “b” for ∆τ = 0.167) in comparison with results
that the same formalism yields for a constant squared Fermi velocity 〈|vk|2〉. The
inclusion of a nonconstant 〈|vk|2〉(ε) clearly impacts the total spectral weight and
its distribution for all choices of the interaction. In general, features become more
pronounced. Quantitatively, this effect becomes less important for strong interac-
tions: at U = 5, the relative error associated with a neglect of the energy dependence
of 〈|vk|2〉(ε) never exceeds about 20%. From this fact we conclude that also a full
finite-dimensional LDA evaluation of ρ̃(ε) or, equivalently, of 〈|vk|2〉(ε) would not
lead to dramatic changes compared to our estimate. Therefore, we regard our result
for U = 5 as a reasonable LDA+DMFT(QMC) estimate for the 3d t2g contribution
to the optical conductivity of La1-xSrxTiO3 with doping x = 0.06. On the other
hand, much more reliable results for all observables discussed in this section could
be expected when using a state-of-the-art QMC program that does not suffer from
large ∆τ errors due to an inefficient implementation of the Fourier-transformation
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Figure 5.18: QMC estimates for the t2g contribution to the optical conductivity σ(ω) of
La1-xSrxTiO3 at T = 0.1 (thick lines). For the thin lines, 〈|vk|2〉(ε) is set to the constant
valid for the hc lattice with NN hopping.

(cf. subsection 3.4.1 and App. C).

When comparing the theoretical transport data to the experimental results re-
produced in the following, we also have to keep in mind that interband excitations
have been completely neglected so far. A full consistent calculation would require
knowledge of the dispersions of all relevant bands and would have to take relative
positions of atoms in the unit cell into account (see, e.g., Ahn and Millis, 2000). Then
all contributions not involving the correlated t2g band could be calculated using the
usual LDA bubble formula for noninteracting electrons. The pure t2g contribution
could be evaluated as before, but using the LDA estimate for 〈|vk|2〉(ε). Finally,
transitions between the t2g band and other bands (e.g., the eg or the O 2p bands)
would involve both quasiparticles with finite and infinite lifetime. In lack of this data
we can only estimate that additional contributions to σ(ω) will appear at least for
ω & 1 eV.

Since we are not aware of experimental data for the optical conductivity of
La1-xSrxTiO3 for the exact doping level x = 0.06, we reproduce a set of results
obtained for doped LaTiO3 with different stated compositions in chronological order.
Measurements of σ(ω) (solid lines) on melt-grown samples over the full Sr doping
range (Fujishima, Tokura, Arima, and Uchida, 1992) are shown in Fig. 5.19. An in-
terpolation between the results for “x = 0.9” (here “x” denotes the La content) and
“x = 1.0” or “x = 0.98” should be compared to our results. We note that this exper-
iment indicates a minimum in σ(ω) at ω ≈ 1.2 eV and that the maximum of σ(ω) at
small frequencies exceeds this minimum by a factor of 5− 6. Since the contribution
at about 6 eV remains visible in Fig. 5.19a in the limit x→ 0, i.e., for an empty t2g
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a) b)

Figure 5.19: a)+b) Optical conductivity σ(ω) (solid lines) as measured by Fujishima et al.
(1992) at T ≈ 300 K. Since x here corresponds to the t2g band filling, x ≈ 1 is the strongly
correlated limit. b) Low-energy part with a linear scale and electronic energy-loss function
Im (−1/ε) (dashed lines).

band, a large part of it must be due to excitations involving other bands. Note that
a tail of this contribution extends down to about 1 eV. The width of the remnant of
a Drude peak is even much larger than found in our high-temperature calculations
which points towards strong disorder. Curve “C” in Fig. 5.20a shows σ(ω) measured
for La1−xSrTiO3 with x ≈ 0.07 (Crandles et al., 1994). Here, a sharp Drude peak
is observed at very low frequency ω . 0.1 eV while for larger frequencies the curve
is almost flat. If this is significant, disorder effects seem to be less important in this
case.

In both cases, there is no obvious agreement with any of the results shown in
Fig. 5.18, i.e., with the (intraband absorption only) LDA+DMFT theory. While the
minimum experimentally seen in σ(ω) slightly above 1 eV would find correspondence
in the theoretical results for U = 4.25, the computed Drude weight seems still too
large even for U = 5.0.

The remaining three figures for σ(ω) in doped titanates are all due to Tokura’s
group. While Fig. 5.20b relates to LaTiO3+δ/2 and shows noisy peaks at low fre-
quencies (Okimoto et al., 1995), a curve for La1-xSrxTiO3 with x = 0.1 has been
added to a selection of the same curves in Fig. 5.21a (Katsufuji et al., 1995). In the
latter diagram, also the low-frequency parts have been removed. Finally, Fig. 5.21b
apparently shows the same measured data (solid lines) as Fig. 5.21a, but now ex-
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a) b)

Figure 5.20: a) Optical conductivity σ(ω) for La1−xTiO3 with x ≈ 0.07 for curve C and
x ≈ 0.12 for curve D at T ≈ 300 K (Crandles et al., 1994). The measurements extend
to ω ≈ 3 eV (1 eV = (~c) 8066 cm−1). b) Optical conductivity σ(ω) for LaTiO3+δ/2 at
T ≈ 300 K (Okimoto et al., 1995). Inset: resistivity as a function of temperature.

a) b)

Figure 5.21: a) Optical conductivity σ(ω) for La1-xSrxTiO3+δ/2 with n = 1 − (x + δ) at
T ≈ 300 K: here, the result for n = 0.1 is claimed to have a Sr content of x = 0.1 (Okimoto
et al., 1995). b) Optical conductivity σ(ω) for La1−xCaxTiO3 at T ≈ 300 K (Katsufuji
et al., 1995). Here, the dashed lines extrapolate to the measured dc conductivity (open
circles). Very surprisingly, the measured curves in a) and b) appear to be absolutely
identical.
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a) b)

Figure 5.22: a) Resistivity of Sr1−xLaxTiO3 (Tokura et al., 1993). b) PES for
Ce1−xSrxTiO3 (Yokoya et al., 1999).

trapolated (dashed lines) towards independently measured data points for the dc
conductivity (circles). Katsufuji and Tokura’s (1999) claim that their data was taken
for La1−xCaxTiO3 is very likely erroneous, even though Ca doping might in general
have effects similar to doping with Sr. In the relevant doping range δ ≈ 0.06, these
measurements indicate an almost constant function σ(ω) which is clearly incompati-
ble with our data and points to the presence of strong disorder.

One limitation inherent in our results is the high temperature of T ≈ 1160 K
used in the QMC calculations. This might not be such a bad approximation, e.g., for
room temperature systems, as it first appears. On the one hand, due to the restriction
to purely electronic degrees of freedom and to the neglect of spatial fluctuations in
the DMFT, the effect of high temperatures is likely to be reduced compared to a
full calculation. Furthermore, the qualitative electronic properties of La1-xSrxTiO3

appear to be unchanged over an extremely wide temperature range as illustrated
in Fig. 5.22a: For this material, the resistivity is nearly linear as a function of T 2

both in the correlated (x ≈ 0.95, i.e., δ ≈ 0.05) and in the strongly doped regime
(0.5 . x . 0.9) (Tokura et al., 1993). Similar results have recently been obtained by
Hays et al. (1999) for powder samples and by Gariglio, Seo, Fompeyrine, Locquet,
and Triscone (2001) for epitaxial films.29 Thus, at least the coefficient of the low-
temperature resistivity can be measured at and above room temperature.

Figure 5.22b shows PES for Ce1−xSrxTiO3 (Yokoya et al., 1999) which are sur-

29Gariglio et al. (2001) concentrated on the strongly doped case (δ ≈ 0.5) and attributed the
behavior of the resistivity to a polaronic mechanism. The relevant lattice distortion is here the
dynamic tilting of the oxygen octahedra which gives rise to an optical phonon mode at ~ω0 ≈ 80 K.
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prisingly similar to the corresponding plot for La1-xSrxTiO3 shown in Fig. 5.7. This
demonstrates that our results may apply to a relatively large class of materials and
that, within this class, La1-xSrxTiO3 may not be the system best described by our
approach.

5.5 Conclusion

In this chapter, we have given an introduction to the ab initio density functional
theory, to its local density approximation (LDA), and to the hybrid LDA+DMFT
method in enough detail to expose the various inherent approximations. We have pre-
sented published results (Nekrasov et al., 2000) for La1-xSrxTiO3; the relatively good
agreement of the computed photoemission data with experiments clearly demon-
strates the significant improvement over conventional LDA calculations. We have
also discussed some subtleties of the theoretical treatment of photoemission spectra
(PES) and have demonstrated the numerical significance of an error in the PES code
which we had discovered and corrected.

New results obtained by Nekrasov for the doping dependence of the quasiparticle
weight and of the susceptibility of La1-xSrxTiO3 (unpublished) and a planned joint
publication (Nekrasov, Blümer, Held, Anisimov, and Vollhardt, 2001) as well as our
experiences from treating the metal insulator transition of the half-filled Hubbard
model (cf. chapter 3) using the uncorrected QMC code prompted us to question
the reliability of the LDA+DMFT(QMC) results in the strongly correlated regime.
Therefore, we have repeated all original calculations using an increased number of
imaginary time slices in QMC (∆τ = 0.167 instead of ∆τ = 0.25) and testing vari-
ations of the maximum entropy method (MEM). As expected, we found significant
corrections to the quasiparticle weights and also to the MEM spectra. Our more
accurate treatment also leads to a slightly reduced relative weight in the PES near
the Fermi energy which is, however, still too high in comparison with experiment.
Furthermore, we have computed x-ray absorption (XAS) spectra. While the overall
agreement with experiment was seen to be reasonable when including the contribu-
tions of Ti eg and O 2p bands (in addition to the Ti t2g bands), the weight at the
Fermi energy was again overestimated by theory.

Finally, we have computed the first LDA+DMFT(QMC) estimate of the Ti t2g
contribution to the optical conductivity σ(ω) of La1-xSrxTiO3. One prerequisite for
this calculation was the development of a program for the inversion of the general k-
integrated Dyson equation. In lack of momentum resolved LDA data, we also needed
to determine the effect of a nonconstant Fermi velocity by application of the general
dispersion formalism developed in Sec. 2.3 to the LDA density of states. A detailed
comparison of the numerical results with experiment is difficult. On the one hand,
experimental results for σ(ω) differ greatly with respect to the presence or width
of a Drude peak. On the other hand, contributions of orbitals not included in our
theory can be expected to be significant. Taking these uncertainties into account, the
overall agreement seems reasonable; again, the most prominent discrepancy is that
the theory predicts too much weight at small frequencies.
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One unrealistic aspect of all LDA+DMFT(QMC) calculations presented in this
chapter was the high temperature T ≈ 1160 K. A reduction of the simulation tem-
perature to room temperature would be desirable; such a project is clearly realistic,
in particular when using an improved QMC code (cf. App. C) for which the dis-
cretization ∆τ = 0.25 is sufficiently accurate. One might also want to investigate
the influence of non-uniform on-site coupling terms, the importance of hybridization
terms in a full-Hamiltonian calculation, or the impact of the orthorhombic distortion.

We conclude that the LDA+DMFT(QMC) treatment is vastly superior over the
sole application of LDA already at the present stage. Still, the material La1-xSrxTiO3

is less metallic at x = 0.06 than the theory predicts. If this finding holds up in
improvements of the theoretical treatment and in experiments which are more bulk-
sensitive, the remaining discrepancies may be due to disorder (which is clearly present,
but should be washed out since Ti has 8 La/Sr nearest neighbors) or to (precursors
of) antiferromagnetic order.



278 5. Realistic Modeling of Strongly Correlated Materials



279

Summary

The characterization of a material as metallic or insulating, the study of transitions
between such states and the development of suitable models is clearly of great fun-
damental and practical interest. The one-band Hubbard model is a conceptionally
relatively simple model which is potentially relevant in this context since its pri-
mary parameter, the on-site interaction U triggers a transition or a crossover from
metallic behavior at small U to insulating behavior at large U and half filling. A
reduction of complexity of this model is achieved by the dynamical mean-field theory
(DMFT); due to its nonperturbative character, this method is reliable in the range
of interest, i.e., for intermediate to strong coupling. The resulting model certainly
misses important properties of specific materials such as V2O3; nevertheless, it is a
good candidate for controlled numerical studies of the more abstract metal-insulator
transition (MIT) problem.

We have presented quantum Monte Carlo (QMC) results for a fully frustrated
version of the Hubbard model and constructed its phase diagram. We have resolved
a controversy regarding the existence and extent of the MIT coexistence region and
have succeeded in the precise determination of the first-order transition line; a task
that was previously considered too difficult for numerically exact methods. The new
methods employed for this purpose and a more direct (and yet untested) approach
developed in this work should prove fruitful for broader application in the future.
Further research will also profit from our discovery and correction of problems in
some implementations of the QMC method.

The MIT phase diagram Fig. 3.50, a main result of this work, clearly does not
represent a complete scenario for any material featuring a MIT. This follows already
from the finite (and large) entropy predicted in the insulating ground state which
violates Nernst’s law. This contradiction may to some degree be regarded as an arti-
fact of the DMFT limit: For any fixed disorder distribution and finite hopping range,
long-range order is expected to set in below some critical temperature in any finite
dimension d. A more realistic and consistent DMFT description is possible when the
low-temperature phase is ordered already in d = ∞, i.e., for partial frustration. We
have discussed the qualitative implications of variable frustration in the (nongeneric)
case that the properties of the paramagnetic phase remain unchanged. The question
whether the topology of the phase diagram of V2O3 (with a first-order paramagnetic
metal-insulator transition and an antiferromagnetic low-temperature phase) can be
reproduced for a lattice with realistic frustration is still open.

The theory of transport in infinite dimensions was previously restricted to the
hypercubic lattice (or anisotropic stacked lattices) with nearest-neighbor hopping.
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We have generalized the formalism and derived explicit general expressions for the
optical f -sum rule. We have constructed the first regular lattice with finite (semi-
elliptic) band edges in d = ∞ and have thus obtained the first DMFT results for
coherent and isotropic transport compatible with a semi-elliptic density of states.

We have reported on progress in the realistic modeling of strongly correlated elec-
tron systems using the hybrid LDA+DMFT method. This recently developed method
starts with the ab initio density functional theory and treats the missing correlations
within DMFT. Evaluating the resulting multi-band problem using QMC, we have
computed photoemission and x-ray absorption spectra for the transition metal ox-
ide La1-xSrxTiO3. The results represent a significant improvement over conventional
LDA calculations. We have discussed the impact of the QMC discretization error
and computed a first estimate of the t2g contribution to the optical conductivity.

The unifying project of this thesis has been the modeling of strongly correlated
electron systems in the vicinity of a metal-insulator transition by application of the
dynamical mean-field theory which becomes exact in the limit of infinite dimension-
ality. Within this project, we have studied single-band as well as multi-band models,
pursued both pure model Hamiltonian approaches and the ab initio LDA+DMFT
approach and computed both local and transport properties. A large amount of nu-
merical work, i.e., the planning, organization, and analysis of several thousand QMC
simulations using tens of thousands of hours of supercomputer time was clearly es-
sential for obtaining the accurate results which we have presented in this thesis.
Furthermore, we have written a large number of computer programs and have mod-
ified and extended some others. Many of our results, however, could not have been
obtained without the development or improvement of methods and formalisms as
well as analytical calculations. It is this more theoretical than numerical aspect of
our work which we found particularly rewarding.
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Appendix A

Additions to “Models and
Methods”

A.1 Extensions of the Hubbard Model

The one-band Hubbard model represents a highly idealized view of strongly correlated
materials. Some of its shortcomings are best characterized by writing down minimal
model extensions which could be used for adding the missing physics. While most of
the extensions collected in this section will not be used for actual calculations in this
thesis, we will discuss the implications of extended hopping in chapter 2 and study a
3-band model based on LDA input data in chapter 5.

The applicability of the one-band Hubbard model to d or f electron systems is
a priori questionable since the partially filled bands correspond to atomic orbitals
which are 5-fold and 7-fold degenerate (for each spin direction), respectively. While
bands in a lattice are more complicated than orbitals of isolated atoms, the remaining
degeneracy can be inferred from symmetry considerations alone. Often it is useful to
consider a cubic representation of the angular part of atomic d orbitals,

|dxy〉 ∝ (|2, 2〉 − |2,−2〉) , |dyz〉 ∝ (|2, 1〉+ |2,−1〉) , |dzx〉 ∝ (|2, 1〉 − |2,−1〉)
|dx2−y2〉 ∝ (|2, 2〉+ |2,−2〉) , |d3z2−r2〉 ∝ |2, 0〉, (A.1)

expressed in terms of eigenfunctions of the angular momentum operator,

l2|l,m〉 = ~
2l(l + 1)|l,m〉, lz|l,m〉 = ~m|l,m〉 . (A.2)

In lattices with cubic symmetry the five d orbitals are energetically split into the t2g
orbitals (|dxy〉, |dyz〉, |dzx〉) and the eg orbitals (|dx2−y2〉, |d3z2−r2〉), which give rise
to one threefold degenerate and one twofold degenerate band, respectively. Lower
symmetry can lift the remaining degeneracies; e.g., in the trigonal case the t2g orbitals
are further split into one nondegenerate a1g and one twofold degenerate eπg band.
Thus, it is possible that in some d systems only one band crosses or touches the
Fermi surface which then justifies the one-band assumption made in subsection 1.1.4
and used in chapter 3. In general, however, the inclusion of several orbitals per site
is important. An SU(2)-invariant generalization of the Hubbard model where the
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interaction is still local but the valence band is degenerate then contains additional
coupling terms1 (Anderson, 1961; Dworin and Narath, 1970)

Ĥm-band = −t
∑

〈ij〉,νσ
ĉ†iνσ ĉjνσ + U

∑

iν

n̂iν↑n̂iν↓

+V0

∑

i;ν<ν′;σσ′

n̂iνσn̂iν′σ′ + F0

∑

i;ν<ν′;σσ′

ĉ†iνσ ĉ
†
iν′σ′ ĉiνσ′ ĉiν′σ, (A.3)

where ν,ν ′ (with 1 ≤ ν ≤ m, 1 ≤ ν ′ ≤ m) are band indices. The exchange term
parameterized by the Hund’s rule coupling F0 can be rewritten as

ĤF0
= −2F0

∑

i,ν<ν′

(

Ŝiν · Ŝiν′ +
1

4
n̂iνn̂iν′

)

(A.4)

with Ŝiν = 1
2

∑

σσ′ ĉ
†
iνστ σσ′ ĉiνσ′ being the spin operator for orbital ν at site i and the

Pauli matrices τ σσ′ . In quantum Monte Carlo (QMC) simulations, the spin-flipping
terms implicit in (A.4) lead to a numeric (minus-sign) problem. Therefore, one here
usually replaces the Heisenberg interaction part of (A.4) by an Ising-type interaction
at the cost of breaking the SU(2) symmetry (Motome and Imada, 1997; Held and
Vollhardt, 1998). Since ŝziν ŝ

z
iν′ = σσ′n̂iνσn̂iν′σ′/4 = (2δσσ′ − 1) n̂iνσn̂iν′σ′/4, one can

write this modified multi-band Hubbard Hamiltonian as

Ĥz
m-band =

∑

〈ij〉,νσ
εkν ĉ

†
kν ĉkν + U

∑

iν

n̂iν↑n̂iν↓ +
∑

i;ν<ν′;σσ′

(V0 − δσσ′F0) n̂iνσn̂iν′σ′ . (A.5)

The interaction U between electrons within each orbital is always larger than the
interorbital density-density interaction V0. The smaller exchange coupling F0 can
trigger ferromagnetic and (possibly coexisting) orbital order.2

While in general the inclusion of different nondegenerate bands involves an ad-
ditional large number of parameters, one can model (and simulate using QMC, e.g.,
within the DMFT) the influence of a half-filled, locally polarized and relatively inert
subband as observed in manganites by adding a Kondo-type interaction between the
itinerant electrons and some spin degree of freedom, −2

∑

ν

∑

i ŝiν · Ŝi. Here, ŝiν are

the spin operators for the itinerant twofold degenerate eg band while Ŝi models a
localized spin-3/2 originating from the t2g band (Held and Vollhardt, 2000).

An additional complication in compounds is the presence of several inequivalent
ions per unit cell. Such systems can be modeled microscopically by introducing dif-
ferent on-site energies, Coulomb interactions, and hopping matrix elements within a
unit cell or more phenomenologically by using renormalized hopping matrix elements
between just a subset of orbitals (while others are integrated out). One example of the

1Here, an on-site pair hopping term which only contributes when one orbital is doubly and
another singly occupied is neglected (Held and Vollhardt, 1998).

2In the application of the LDA+DMFT method in chapter 5 we will set U = V0 and F0 = 0;
in the absence of long range order and for small filling n . 1 the resulting error is not expected to
exceed other sources of errors. In general, local exchange terms only become negligible for extended
orbitals (an extreme case being valence molecular orbitals in C60 Fullerides).
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former approach is the “Emery model” or “Varma-Schmitt-Rink-Abrahams model”
for electron holes in the copper oxide planes in high-Tc superconductors (Varma,
Schmitt-Rink, and Abrahams, 1987; Emery, 1987)3

Ĥsc = −tpd
∑

〈i,j〉,ν,σ
(p̂†jνσd̂iσ + h.c.)− tpp

∑

〈j,j′〉,ν,σ
(p̂†jνσp̂j′νσ + h.c.) + εd

∑

i

n̂di + εp
∑

jν

n̂pjν

+Ud
∑

i

n̂di↑n̂
d
i↓ + Up

∑

jν

n̂pjν↑n̂
p
jν↓ + V

∑

〈ij〉,ν
n̂di n̂

p
jν . (A.6)

The latter, more phenomenological approach is used for modeling the compound
La1-xSrxTiO3 using an explicit treatment of the Ti 3d t2g orbitals only in chapter 5.

Since the restriction to local interactions in the Hubbard model is a crude ap-
proximation to the Coulomb interaction, one may expect significant improvements
by including nearest-neighbor terms of the Coulomb interaction. For a one-band
model, these may be written in the form (Hirsch, 1989; Strack and Vollhardt, 1994)

V̂ NN
1-band =

∑

〈i,j〉

[

V n̂in̂j − 2F (ŜiŜj +
1

4
n̂in̂j)

+X
∑

σ

(ĉ†iσ ĉjσ + h.c.)(n̂i−σ + n̂j−σ) + F ′(ĉ†i↑ĉ
†
i↓ĉj↓ĉj↑ + h.c.)

]

. (A.7)

Here, the V term and the F term are completely analogous to the onsite interac-
tions between orbitals in (A.3), while the additional terms involve density-dependent
hopping (X) and pair hopping (F ′). These nearest-neighbor contributions of the
Coulomb interactions can, e.g., drive ferromagnetism (Hirsch, 1989; Kollar, Strack,
and Vollhardt, 1996; Blümer, 1996; Wahle et al., 1998), charge density waves, phase
separation, or superconductivity (Hirsch and Marsiglio, 2000).

Disorder is always present to some degree in real materials, in particular in doped
systems (as considered in chapter 5), and is potentially very important, e.g., in the
context of Anderson localization. A straightforward generalization of the one-band
Hubbard model leads to

Ĥdisorder =
∑

iσ

(εi − µ) n̂iσ+
∑

〈i,j〉,σ
tij

(

ĉ†iσ ĉjσ + h.c.
)

+
∑

i

Ui(n̂i↑−
1

2
)(n̂i↓−

1

2
), (A.8)

where site-diagonal terms, i.e., the lattice potentials εi and the Coulomb interaction
Ui and/or the (intersite) hopping terms tij may be allowed to vary [for a treatment
within DMFT, see, e.g., Dobrosavljević and Kotliar (1993) and Ulmke (1998)].

The inclusion of phonons is possible in terms of the Holstein-Hubbard model, in
which the Hubbard model is supplemented by the electron-phonon interaction plus
a phonon energy (Holstein, 1959; Zhong and Schüttler, 1992; Freericks and Jarrell,
1995b)

ĤH-H = ĤHub + g
∑

i

Ri(n̂i↑ + n̂i↓ − 1) +
1

2

∑

i

(P 2
i

M
+MΩ2R2

i

)

. (A.9)

3Here, i and j denote the unit cell for Cu 3dx2−y2 orbitals and O 2px or 2py orbitals, respectively.
The orbital index ν = x or ν = y distinguishes the oxygen orbitals (living on different sites);
unrestricted summation over omitted spin indices is implied.
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Here, Ri (Pi) label the phonon position (momentum) at site i, g is a coupling strength,
M is the phonon mass and Ω its frequency.4

Finally, the relativistic spin-orbit interaction can be approximately reintroduced
in the form

ĤSO = ξ
∑

νν′σσ′

〈νσ|L · S|ν ′σ′〉c†νσcν′σ′ , (A.10)

where L is the angular momentum operator, S the vector of Pauli matrices, and
the parameter ξ depends on the system (see, e.g., Bruno, 1993; Harle, 2000). In the
presence of magnetic order, this interaction may lead to an easy or hard axis. Within
DMFT, the behavior of antiferromagnetic systems with a strong easy axis can also
be modeled phenomenologically by restricting local spin moments to point along this
axis which then leads to metamagnetic phase transitions of both first and second order
upon variation of an external magnetic field (Held, Ulmke, and Vollhardt, 1996; Held,
Ulmke, Blümer, and Vollhardt, 1997).

A.2 Characterization of Generic Momenta

In the following, we will first extend the definition of nongeneric momenta given in
subsection 1.2.2 to finite dimensions, then show that in all dimensions nongeneric
momenta can be characterized as being close to the origin 0 or to the antiferromag-
netic wave vector Q and, finally, draw some conclusions for the d → ∞ limit of the
hypercubic lattice and the DMFT in general.

In the following, we will exploit that the expression ηq = limd→∞
1
d

∑d
α=1 cos(qα)

introduced in the context of (1.23) for the d =∞ hc lattice naturally extends to finite
dimensions. Since ηq always varies in the range [−1, 1] and ηq 6= 0 defines nongeneric
vectors q in d = ∞, one can identify vectors q with |ηq| > η0 (for any η0 > 0)
with strong momentum correlation in any finite dimension d and loosely call them
nongeneric, too. Furthermore, we can estimate ηq from the vector norm |q| which
for momenta in the first Brillouin zone, unit lattice spacing a = 1, and dimension d
varies between |0| = 0 and |Q| = π

√
d:

ηq = −1 +
1

d

d∑

α=1

(1− cos(qα)) ≤
|q|2
2d
− 1 (A.11)

Therefore, η is strictly negative for all momenta inside a hypersphere of radius
√

2d
while η < −0.5 for momenta |q| <

√
d. Analogously, η > 0 (η > 0.5) for the

corresponding hyperspheres around Q. Thus, we have identified convex sets of “non-
generic” momenta illustrated in Fig. A.1a which are associated with strong energetic
correlations via (1.23) and which acquire εq = −∞ (εq =∞) in the limit d→∞ on
the hc lattice. In Fig. A.1b, we show the probability distribution of ηq for d = 1, 2, 3 as

4In principle, “phonon coordinate” can be translated as “ion coordinate” (which is d-
dimensional). Note, however, that the single Einstein phonon mode considered here only has a
single coordinate, i.e., is one-dimensional. A generalization to (anisotropic) d-dimensional coupling
would require the inclusion of several phonon frequencies.
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Figure A.1: a) Distribution of “nongeneric” momenta q for the hypercubic lattice in
dimensions 1 and 2. Light (heavy) shading indicates states with |q| <

√
2d (|q| <

√
d) which

implies |ηq| > 0 (|ηq| > 0.5), when estimated from (A.11). The thick circle indicates the
rescaled average length π

√

d/3 of vectors in d→∞. b) Full probability distribution P (ηq)
(rescaled hc DOS) for d = 1, 2, 3 and partial distributions corresponding to hyperspheres
with |q| <

√
2d (solid lines) or |q −Q| <

√
2d (dashed lines) (cf. shaded areas in a) or to

momenta close to the diagonal (dotted lines).

well as partial distributions corresponding to the restricted set of momenta |q| <
√

2d
and |q−Q| <

√
2d. While the criterion (A.11) is obviously not sharp, it clearly selects

states with extremal values of ηq (and, for a hc lattice, also with extremal energy εq).
For comparison, the partial probability distributions are also shown for momenta
which are close to the diagonal extending from 0 to Q. While this set of vectors
with minλ{|q − λQ|} < π2d/12 − π2

√

d/180 (vectors one standard deviation closer
to the diagonal than the average in the reduced Brillouin zone) has overlap with the
other two sets for fixed (finite) dimension, it does not pick out extremal ηq and can
therefore not be associated with nongeneric momenta.5 We stress that the Euclidean
radius of the selected hyperspheres is of the order of the longest vector within the
Brillouin zone in all dimensions, i.e., is not small in high dimensions.

Therefore, transitions with small momentum transfer (measured by Euclidean
length) imply small energy transfer in any dimension, also in the limit d =∞. Con-
sequently, the concept of a Fermi surface remains meaningful in this limit. The Fermi
body of states occupied at low T even remains simply connected within the Brillouin
zone in the noninteracting limit. Thus, energies are not random in momentum space.

5This finding contradicts statements made in Gebhard’s book which we cite here for comparison:
“Furthermore, on the hypercubic lattice, some correlations remain in the nesting direction, q = λQ
(|λ| ≤ 1). For all other q with |q − λQ| > O(

√

1/d), however, the two energies are completely
uncorrelated,...” (Gebhard, 1997). While it is clear that strictly on the diagonal q = λQ (with
0 ≤ λ ≤ 1) all values λ 6= 0.5 correspond to finite ηq = cos(λπ), this is evidently not true for its
surroundings.
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Figure A.2: Probability distribution P (|q|/|Q|) of the Euclidean vector length of momenta
|q| within the Brillouin zone for hypercubic lattices, normalized by |Q| = π

√
d. In the limit

d→∞, almost all q vectors (i.e., a unit fraction) are of length π
√

d/3.

On the other hand, small momenta and small momentum transfers have little phase
space in high dimensions which leads to the irrelevance of momentum conservation
in integrations over the full Brillouin zone. The Fermi surface cuts the Brillouin zone
boundary infinitely often which is not surprising: each of the 2d hypersurfaces defined
by kα = ±π is cut once for the hc lattice. The somewhat unphysical consequence is
strongly enhanced umklapp scattering. As illustrated in Fig. A.2, the distribution of
|q| is peaked around π

√

d/3 with vanishing width for d→∞. Thus, a unit fraction
of all vectors has exactly the same lengths in this limit. In this sense, the generic q
vectors are characterized by an intersection of the surface of a hypersphere of radius
π
√

d/3 with a hypercube of side length 2π.

A.3 Dynamical Cluster Approximation, CDMFT,

and Random Dispersion Approximation

We will here shortly characterize two approaches, the dynamical cluster approxima-
tion (DCA) and the CDMFT (“C” for “cellular”), which generalize the DMFT by
introducing some aspects of finite dimensionality without being systematic in 1/Z.
We will also discuss the random dispersion approximation which is not an extension
but an alternative approach to the DMFT in the limit of Z →∞.

The DCA is a generalization of the DMFT which introduces momentum depen-
dence for the self-energy (Hettler, Tahvildar-Zadeh, Jarrell, Pruschke, and Krishna-
murthy, 1998; 2000). This isaccomplished by dividing the Brillouin zone into reg-
ular patches characterized by some average momentum. The self-energy is then
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a) b)

2π/L

kx

ky

Figure A.3: DCA. a) Illustration of course-graining of the Brillouin zone for d = 2 and
L = 2 [taken from Hettler et al. (2000)]. b) Real-space scheme of the resulting impurity
model. Each impurity is not only influenced by a local bath (a frequency-dependent on-
site energy), but also coupled by frequency-dependent hopping matrix elements to other
impurities (arrows). The couplings also extend across the periodic cluster boundaries.

assumed to depend only on the coarse-grained momentum which may be chosen as
Kαl = 2πl/L, where 0 ≤ l < L and 1 ≤ α ≤ d labels the dimensions. This is illus-
trated in Fig. A.3a for d = 2 and L = 2 where the Brillouin zone is mapped onto
L2 = 4 coarse-grained momenta. Given a self-energy with constant functional form
(with respect to ω) on each of the patches one may apply the obvious generalization
of (1.30) for computing a coarse-grained lattice Green function which in turn defines
a generalized bath Green function by using (1.35) for each K. The corresponding
generalized real-space impurity problem, illustrated in Fig. A.3b now involves Ld

impurities which do not only couple to frequency-dependent baths (which here ap-
pear as generalized on-site energies), but are also coupled by generalized hopping
processes with frequency-dependent amplitudes. This problem has to be solved in
presence of on-site interactions on each impurity in order to calculate a new Green
function for the periodic cluster which is then interpreted as a course-grained lattice
Green function so that the iteration scheme can be closed. The method evidently
reduces to the DMFT for L = 1, but involves the solution of a problem even more
complicated than a periodic finite-size Hubbard model in the general case. It can be
shown to be causal at any L and to approach the exact finite-dimensional model for
L→∞; therefore it constitutes a very attractive interpolating scheme between finite
and infinite dimensions.

The distinctive feature of CDMFT methods (Lichtenstein and Katsnelson, 2000;
Kotliar, Savrasov, and Pálsson, 2001) (where “C” stands for “cluster” or “cellular”)
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Figure A.4: CDMFT: the lattice is broken up in clusters (here with 2x2 sites); one of these
is treated explicitly (e.g., using QMC) while the influence of the others is captured in a
cavity picture analogous to the DMFT (scheme adapted from Lichtenstein and Katsnelson
(2000)).

is the direct formulation in real (not momentum) space. Here, the lattice is divided
up into free finite-size clusters, one of which is treated explicitly and embedded into a
medium which gives a mean-field estimate of the effect of the surrounding clusters as
illustrated in Fig. A.4. In contrast to the DCA, the cluster is here free, i.e., does not
have periodic boundary conditions. Consequently, the analogue of (1.35) cannot be
formulated in momentum space, but involves explicit matrix inversions in the cluster
indices. Again, one can show causality and the interpolating character towards finite
dimensions.

At least conceptionally, one should expect the CDMFT methods to yield a better
description for short-range correlations within the first few nearest-neighbor shells
than the DCA since here the cluster Hamiltonian is in direct correspondence to the
lattice Hamiltonian. On the other hand, CDMFT breaks the lattice translational
symmetry6 which is preserved in DCA so that the DCA should give a better overall
momentum resolution for the same number of cluster sites (and L > 2). First results
for the d = 2 Hubbard model show that the nonlocal extensions of the DMFT indeed
introduce d-wave type superconducting correlations (Lichtenstein and Katsnelson,
2000; Maier, Jarrell, Pruschke, and Keller, 2000). Very recently, finite-size effects
were found to be smaller for the DCA treatment in a comparative study (Maier and
Jarrell, 2002). For a detailed pedagogical review of the DCA method, see Jarrell,
Maier, Hettler, and Tahvildarzadeh (2001).

The random-dispersion approximation (RDA) is not an extension, but an alter-
native to the DMFT approach. It avoids the self-consistency cycle inherent in all

6Since edge sites of the CDMFT cluster have a reduced number of direct hopping bonds, they are
relatively stronger coupled to the effective medium and can, thus, be expected to be more mean-field
like than inner sites. This is opposite to a direct calculation on a finite cluster with open boundary
conditions where edge sites have less mean-field character.
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solutions of the DMFT (and its extensions mentioned above). Instead, it is based
on the factorization of the noninteracting 2-particle density of states (1.24), which
is assumed to apply to all momenta except for q = 0 and, where appropriate, for
q = Q. Such a system can in principle be obtained for a given DOS as follows
(Gebhard, 1997): for a finite system, one randomly assigns the kinetic energy εk to
each k point in the Brillouin zone where the probability P (ε) of finding the energy
εk in the semi-open interval [ε − ∆ε/2, ε + ∆ε/2[ is given in terms of the DOS by
P (ε) = ρ(ε)∆ε. In practice, one usually starts with a smooth dispersion and ap-
plies a random permutation to the momenta, so that the dispersion is again random,
but the DOS of each realization exactly equals the (discretized) target DOS. Since
the randomization destroys the topology of the lattice anyway, the method can be
formally applied in any dimension; for large enough systems it is claimed to be self-
averaging. Due to the neglect of correlations in the noninteracting 2-particle DOS,
the RDA makes a large error for processes with small momentum transfer, even in
large dimensions (cf. the discussion in subsection 1.2.2) which might affect thermo-
dynamic properties although the associated phase space becomes vanishingly small.
Still, it is not apparent how this should be a source of the large discrepancies be-
tween RDA estimates for the paramagnetic metal-insulator transition (Noack and
Gebhard, 1999) in comparison to all recent DMFT estimates (see chapter 3). Up
to now, numerical results for the RDA have suffered from considerable finite-size ef-
fects, since the number of k points was restricted to a value of 14 or smaller so far
in an exact diagonalization scheme. Reliable evaluation methods for bigger systems
are needed for the RDA problem, e.g., an efficient formulation of the density matrix
renormalization group (DMRG) method (White, 1992; 1993) in k-space, in order to
clarify if the different transition scenario is a genuine property of the RDA theory.
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Appendix B

Hyperdiamond Lattice

The hyperdiamond (hd) lattice is a bipartite non-Bravais lattice which generalizes the
d = 2 honeycomb lattice and the d = 3 diamond lattice to arbitrary dimensions. In
addition to the usual definition and recursive construction (Santoro, Airoldi, Sorella,
and Tosatti, 1993) we will here use a representation in d + 1 dimensions (van Don-
gen, 1997). As we will show, only the latter clearly exposes the isotropy of the hy-
perdiamond lattice in the long-wavelength limit and allows for a computation of the
optical conductivity not only in d =∞ but, within the local approximation for self-
energy Σ and particle-hole irreducible vertex Γ, also for arbitrary finite dimensions
(see chapter 4). Although an extension to longer range hopping is straightforward
we will in this section only consider NN hopping.

A general characterization of the hyperdiamond lattice in dimension d ≥ 1 is
(Santoro et al., 1993)

1. each lattice site has d+ 1 nearest neighbors (NN),

2. the angle between each pair of d+1 unit1 primitive lattice vectors τ l connecting
a site to its NN is constant,

τ l · τm = γd, (B.1)

3. for d > 1, there is no site-centered inversion symmetry, but only bond-centered
inversion symmetry,

where the last statement follows from the first two. The lack of inversion symmetry
implies that the unit vectors {τ l} cannot be the same on A and B sublattices. Instead
they are related by an inversion operation, τB

l = −τAl . Thus it is useful to rewrite
the noninteracting Hamiltonian by explicitly separating A and B lattice sites,

Ĥ0 = −t
∑

〈i,j〉,σ

(

ĉ†riσ
ĉrjσ

+ ĉ†riσ
ĉrjσ

)

= −t
∑

i∈A,σ

∑

l

ĉ†
ri+τA

l
,σ
ĉriσ
− t

∑

j∈B,σ

∑

l

ĉ†
rj+τB

l
,σ
ĉrjσ

= −t
[ ∑

i∈A,σ

∑

l

ĉ†ri+τ l,σ
ĉriσ

+
∑

j∈B,σ

∑

l

ĉ†rj−τ l,σ
ĉrjσ

]

, (B.2)

1As usual, we define the lattice spacing such that NNs have unit distance.
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where 〈i, j〉 denotes NN hopping bonds and τ l ≡ τAl .
For the hyperdiamond lattice (hd), these hopping vectors can be constructed

recursively:

1. start with a regular chain,

τ 1 = (1), τ 2 = (−1) for d = 1 (B.3)

2. given a set {τ ′
l} of primitive lattice vectors in dimension d− 1, define

τ l =







(
√

1− γ2
dτ

′
l, γd), l = 1, 2, . . . , d

(0, 0, . . . , 0, 1)
︸ ︷︷ ︸

d components

, l = d+ 1 (B.4)

γd =
γd−1

1− γd−1

= −1

d
. (B.5)

Now, the noninteracting tight-binding Hamiltonian (with NN hopping) in Fourier
transformed form remains offdiagonal in the sublattice index α ∈ {A,B},

H0 =

(
0 H1

H∗
1 0

)

, H1 = −t
d+1∑

m=1

e−ik·τm , (B.6)

where the eigenvalues form two energy bands εnk = ±|H1|. This expression can be
simplified by a transformation in momentum space (α = 1, . . . , d),

k′α =
∑

β

Aαβkβ, Aαβ = (aα)β, aα = τ d+1 − τα . (B.7)

Eliminating an overall phase factor e−ik·τd+1 we have

εnk = ±t
∣
∣
∣1 +

d∑

α=1

eik
′
α

∣
∣
∣, −π ≤ k′α ≤ π, (B.8)

which provides a convenient way to compute the DOS and shows that perfect nesting
is not possible on the bipartite hd lattice. In the limit d → ∞, where the hopping
amplitude has to be scaled as t = t∗/(d+1), the DOS is readily evaluated analytically,

ρhd(ε) =
|ε|
t∗2

e−ε
2/t∗2

. (B.9)

Calculations of properties which directly depend on k (i.e., not only via εnk), in
particular transport properties, however, require knowledge of the transformation
matrix (Aαβ). As a general example for this problem let us consider the Fermi
velocity vk = −∇εk for an energy function defined in terms of transformed k vectors,
εk = f(Ck) with arbitrary function f and matrix C. In the present case, where
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the functional form of f is explicitly known, one can first compute the derivative
v′
k′ = −∇k′f(k′) and then apply the transformation

∂f(Ck)

∂kα
=

∑

β

∂f

∂k′β

∂(Ck)β
∂kα

=
∑

β

Aβα
∂f

∂k′β
(B.10)

vk = CTv′
k′

∣
∣
k′=Ck

. (B.11)

While the transformation matrix defined via (B.3)-(B.5) and (B.7) can be evaluated
in any finite dimension, this is in general a complicated task and it is unclear how
to take the limit d → ∞ of (B.10). Furthermore, symmetries are hidden so that it
is not even apparent if observables which transform like a tensor such as, e.g., the
optical conductivity will be isotropic in all dimensions.

Thus, we switch to an alternative representation of the hyperdiamond lattice
which embeds the d-dimensional hd lattice into d+1 host dimensions in the following
way (van Dongen, 1997): starting with a d + 1-dimensional hypercube with NN
hopping we remove every second bond such that the unit vectors connecting to NNs
are for sublattices A and B

τ̃Al = el, τ̃Bl = −el . (B.12)

Here, {el} are the usual cartesic unit vectors in d + 1 dimensions; the tilde (∼)
indicates properties in the expanded d + 1-dimensional vector space. For sake of
definiteness we define the origin to belong to the A sublattice. Figure B.1 illustrates
this embedding for d = 2, i.e., the honeycomb lattice.

It is clear from (B.2) that a tight-binding Hamiltonian defined on a periodic
lattice with fixed uniform NN hopping is fully defined by the topology of the hopping
bonds and invariant under distortions. Since the lattice defined by (B.12) has d + 1
NN bonds with a constant angle (here: π/2) between each pair of them, it (more
precisely: each sheet of sites connected by hopping bonds) is indeed topologically
equivalent to the usual hyperdiamond lattice and has both the same noninteracting
DOS and the same single-particle properties for arbitrary additional local interaction.
The noninteracting dispersion is given by

εk̃ = ±1

2

√

(εhc
k̃

)2 + ε̃2
k̃
, (B.13)

where εhc
k̃

= −2t
∑d+1

l=1 cos(k̃l) and ε̃k̃ = 2t
∑d+1

l=1 sin(k̃l). Again, one of the k̃l could
be singled out and be fixed for calculations of the DOS, exposing the equivalence of
the dispersions (B.8) and (B.13). Since 〈(εhc

k̃
)2〉 = 〈ε̃2

k̃
〉 = 2(d + 1)t2, we can read

off from (B.13) that the variance of the DOS of the hyperdiamond lattice is exactly
(d + 1)t2 = t∗2 in any dimension. Note, however, that in the present derivation k̃
remains untransformed within the (halved) Brillouin zone which allows for a direct
calculation of the Fermi velocity (in d+ 1 dimensions),

(ṽk̃)l =
t

εk̃

(

εhc
k̃

sin(k̃l) + ε̃k̃ cos(k̃l)
)

. (B.14)
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a) b)

Figure B.1: Honeycomb lattice (d = 2) embedded in d + 1 = 3 dimensions. a) Hopping
bonds, i.e., distribution of nonzero matrix elements according to (B.12). b) Projection of
d-dimensional sublattices onto planes.

Since the spectrum of a Hamiltonian is unchanged under any basis transformation
we can perform the k sum in (2.1) directly in the d + 1-dimensional representation.
The numerical result, Fig. B.2, shows that the hd DOS vanishes at ε = 0 for d ≥ 2.
More precisely, for |ε| → 0, ρ(ε) ∝ |ε ln(ε)| for the diamond lattice (d = 3) and
ρ(ε) ∝ |ε| otherwise. Thus, the hyperdiamond lattice is a semimetal at half filling in
the noninteracting limit.

In order to extract transport properties one has to eliminate the extra dimension
by projecting back onto the physical d-dimensional space, a hyperplane in d + 1
dimensions. In a first step we classify the sites belonging to each planar sheet by
considering the quantity s(r) :=

∑d
α=1 rα. We define the origin with s(r = 0) = 0 to

belong to the A sublattice. From (B.12) we can read off that the neighboring B sites
connected by hopping bonds have s = +1. More generally, hopping from A to B
sublattice increases s by one, while hopping from B to A always decreases s by one.
Thus, all sites rni belonging to the planar sheet n are identified by bs(rni )/2c = n,
where n ∈ Z and bxc is the largest integer n ≤ x. Thus, the extent of each sheet in
the d+ 1-dimensional space-diagonal direction

1 =
1√
d+ 1

(1, 1, . . . , 1) (B.15)

is finite with Euclidean thickness 1/
√
d+ 1 so that any transport must vanish in this

direction. Projecting out direction 1 and using τ̃ l · 1 = 1/
√
d+ 1 we obtain for the
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Figure B.2: DOS of the hd lattice.

unit hopping vectors,

τ l =

√

d+ 1

d

(
τ̃ l −

1√
d+ 1

1
)
. (B.16)

After the projection, these are no longer orthogonal,

τ l · τm =
d+ 1

d
(τ̃ l −

1√
d+ 1

1)(τ̃ l −
1√
d+ 1

1) (B.17)

=
d+ 1

d
(δlm −

2

d+ 1
+

1

d+ 1
) =

{
1 for l = m
− 1
d

for l 6= m
, (B.18)

but fulfill the original definitions of the hyperdiamond lattice and are therefore iden-
tical to those defined in (B.1) up to a rotation.

Computations of tensor-like properties can be easily performed in the new for-
malism. First we note that in d+ 1 dimensions all cartesic directions are equivalent.
Thus, any tensor C̃ in the d + 1-dimensional representation which is not dependent
on coordinates must obey this symmetry and have the form

C̃ =








c1 c2 · · · c2

c2
. . . . . .

...
...

. . . . . . c2
c2 · · · c2 c1








. (B.19)

This matrix has the d fold eigenvalue c‖ = c1 − c2 plus the nondegenerate eigenvalue
c⊥ = c1 + dc2. As expected the eigenvector corresponding to c⊥ is 1, the direction
orthogonal to the planes. For transport properties, c⊥ must vanish, c2 = −c1/d, and
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we obtain

C = c1
d+ 1

d








1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 1








. (B.20)

Thus, we have not only proven that transport properties are isotropic on the hyperdia-
mond lattice in the long-wavelength limit2 for any dimension d, but also constructed
a simple algorithm for the computation provided that the corresponding quantity
can be computed for the model in d+ 1 dimensions as defined by (B.12). Numerical
results for transport related quantities of the hd lattice can be found in subsection
4.5.2.

2Note that for the honeycomb lattice the isotropy also follows from the simultaneous presence
of mirror symmetries x → −x, y → −y through the center of a bond in x or y direction and the
rotational symmetry (x, y)→ (x cos(2π/n) + y sin(2π/n)) with n > 2 (here n = 3).
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Appendix C

Using Splines for
Fourier-Transforming
Imaginary-Time Green Functions

As discussed in subsection 3.4.1, the Fourier transformations of Green functions from
imaginary time to Matsubara frequencies and vice versa that arise in the QMC so-
lution of the DMFT problem are not trivial. All problems can be traced back to the
discreteness of the QMC estimates Ḡl for time slices τl = l∆τ . However, the true
imaginary-time Green function G(τ) is known to be a smooth curve with continuous
derivatives (of all orders) on the interval [0, β]. Thus, reasonable results can be ex-
pected by performing the Fourier transform not for the discrete raw data, but for a
fitted smooth curve. In this appendix, we will give a short summary of work carried
out recently in collaboration with Knecht. More details can be found in Knecht’s
(2002) diploma thesis and in upcoming publications.

The simplest practical approach in this context consists of a direct interpolation
of the discrete QMC data by a cubic spline (with a continuous second derivative)
as implemented by Krauth. While this step suffices for closing the self-consistency
equations without any further adjustments (like Ulmke’s smoothing trick), it leads
to nonanalytic behavior of the self-energy near and beyond the Nyquist frequency as
illustrated in Fig. 3.11. In our view, this problem can be traced back to the fact that
the natural spline chosen by Krauth is inadequate for this problem: By definition,
the second derivative of a natural spline vanishes at its boundaries. However, all even
derivatives of the true Green function are maximal at the edges of the interval [0, β].
The resulting misfit leads to unphysical ringing as illustrated in Fig. C.1. Here, the
noninteracting Green function for a semi-elliptic DOS is chosen as an example since
it can be computed with arbitrary precision. Furthermore, moderate interactions
do not lead to qualitative changes in the Green function so that the example is
representative. It is clearly seen that a fit of a discrete set of data points (here for
Λ = 40 and β = 100, i.e., a large discretization ∆τ = 2.5) using a natural cubic spline
with continuous second derivative leads to a large error oscillating with the Nyquist
frequency. While the initial misfit at τ = 0 is similarly large for a natural Akima
spline, the oscillation decays significantly faster due to jumps in the second derivative
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Figure C.1: Difference between exact noninteracting Green function (for semi-elliptic DOS
and β = 100) and cubic spline approximations to the discretized function for Λ = 40. The
strong oscillations observed for the natural spline and for the Akima spline are due to the
unphysically vanishing second derivatives (at τ = 0) of these splines. An optimal choice
of the boundary condition reduces the discrepancies by an order of magnitude and doubles
the oscillation frequency. The inset shows the full curves for small τ .

for this fit. The discrepancies can be reduced by about an order of magnitude and
a smooth curve can be obtained by choosing an appropriate boundary condition
(short-dashed line) which has here been obtained by minimizing the function

F (G(2)(0)) =
L−1∑

j=1

(
G(2)((j + 1)∆τ)

G((j + 1)∆τ)2
− G(2)(j∆τ)

G(j∆τ)2

)2

. (C.1)

It is possible to avoid the minimization by computing the correct second derivative
G(2)(0) analytically (for arbitrary interaction); in any case, however, a cubic spline
interpolation of the full Green function suffers from the problem that derivatives of
fourth and higher order vanish on segments of the splines while they are large for the
true Green function, in particular at τ = 0.

Consequently, a further significant reduction of errors can be expected when the
spline approximation is applied to the difference between the measured (discretized)
Green function {Ḡl} and a good estimate for G when the Fourier transform is known
exactly for the latter. Such a scheme can be based on the following exact high-
frequency expansion for the self-energy (Potthoff et al., 1997):

Σσ(ω) = U (〈n̂−σ〉 −
1

2
) + U 2 〈n̂−σ〉(1− 〈n̂−σ〉)

ω
+O(ω−2). (C.2)

One possible choice of a model self-energy with this asymptotic behavior (including
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the ω−1 term) which is nonsingular (and purely imaginary) on the imaginary axis is
given by

Σmodel,σ(ω) = U (〈n̂−σ〉 −
1

2
) +

1

2
U2 〈n̂−σ〉

(
1− 〈n̂−σ〉

)( 1

ω + ω0

+
1

ω − ω0

)
. (C.3)

While the quality of the low-frequency part of this fit could be tuned by adjusting the
parameter ω0, the value of this parameter is irrelevant for the following as long as it
is not much larger than the bandwidth; we will choose ω0 = 1. By evaluating Σmodel

on the imaginary axis, the corresponding Green function Gmodel can be computed for
an arbitrary number of Matsubara frequencies. Consequently, the Fourier transfor-
mation to imaginary time is unproblematic (when the “free” term 1/(iωn) is taken
care of analytically). Thus, the difference of the Green functions can be accurately
evaluated at all time slices. Since the second derivative of the transformed model
Green function at τ = 0 exactly reproduces that of the true Green function, the
difference is well represented by a natural spline. The Green function is obtained as
a function of Matsubara frequencies by Fourier transforming the oversampled spline
and adding the Matsubara-frequency model Green function to the result.

Predictions for the imaginary-time self-energy of the half-filled Hubbard model
with semi-elliptic DOS at T = 0.1 resulting from the scheme described above for
a range of discretizations 0.1 ≤ ∆τ ≤ 0.4 are shown in Fig. C.2 for the correlated
metallic phase at U = 4.0 and in Fig. C.3 for the insulating phase at U = 5.0.
All results show the correct asymptotic behavior at large frequencies. Oscillatory
behavior which is initially observed at intermediate frequencies (see insets) becomes
undetectable for ∆τ . 0.2 in both figures. The convergence at small frequencies is
good; it will be further discussed below.

One fundamental difference of the QMC code previously used in our group (based
on Ulmke’s smoothing trick, cf. subsection 3.4.1) is that it does not make predictions
for the self-energy beyond the Nyquist frequency as seen in Fig. C.4 and Fig. C.5.
Even worse, the ∆τ error is also large at intermediate and small frequencies. In fact,
the insulating solutions are even qualitatively wrong at small frequencies for large
values of ∆τ .

In contrast, the results of the improved QMC method developed within this the-
sis and used throughout chapter 3 depicted in Fig. C.6 and Fig. C.7 show good
convergence in the most important small-frequency region. In fact, the ∆τ error is
asymptotically almost identical to that of the new optimal scheme at small frequen-
cies, at least in the range ∆τ ≤ 0.25 used within this thesis.

This is also seen in Fig. C.8, where the Eliashberg estimate of the quasiparticle
weight Z (cf. subsection 3.2.3) is shown as a function of ∆τ 2. Both in the metallic
and in the insulating phase, the new approach yields the smallest errors which are
nearly perfectly quadratic in ∆τ . The systematic errors of the QMC program used in
chapter 3 are identical (within statistical errors) at small ∆τ and only slightly larger
for ∆τ & 0.25. In contrast, Ulmke’s method leads to ∆τ errors which are larger by
a full order of magnitude in the insulating case.

While these results of Knecht’s (2002) thesis reproduced in this appendix confirm
that the QMC code used in chapter 3 is indeed adequate for studies of the Mott
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using the new Fourier transformation scheme described in this appendix for various values
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transition they also show that even more accurate results can be calculated at lower
computational cost using the new code. We note that the concept of the method
described here is similar to Jarrell’s QMC implementation. The latter is, however,
less stable since its Fourier transformation relies on a numerical IPT calculation. At
least for a symmetric DOS at half filling, our method is unconditionally stable for
arbitrarily large frequencies without the need for bandpass filters. This is illustrated
in Fig. C.9. Evidently, even relative deviations from the asymptotic behavior never
exceed 0.01 at large frequencies (|ωn| & 20) and decay fast in the limit |ω| → ∞
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which is here cut off by the (constant) number of 1000 Matsubara frequencies used
in the QMC program. Note that the large deviations from the asymptotic behavior
at relatively low frequencies are physical; indeed, these deviations are the nontrivial
result of the QMC calculations.

For further practical applications of the new QMC code and for the generalization
of the asymptotic expansion of the self-energy to the multi-band case, see Knecht
(2002). Interestingly, the multi-band case is more complicated: here, the expansion
of the self energy does not only involve expectation values of densities, but also of
pairwise double occupancies.



305

Appendix D

Linear Response to
Electromagnetic Fields

In this appendix, we review the formalism necessary for identifying the quantized
Hamiltonian for particles in an electromagnetic field and give a short summary of
linear-response theory.

D.1 Electromagnetic Interaction Hamiltonian and

Choice of Gauge

Classically, the equation of motion for a nonrelativistic particle with charge q and
momentum mv at position r in an external electromagnetic field is1

mr̈ = qE(r, t) +
q

c
ṙ ×B(r, t), (D.1)

where the right hand side is the Lorentz force. The electric field E and the magnetic
field B can be expressed in terms of a vector potential A and a scalar potential φ,

B(r, t) = ∇×A(r, t); E(r, t) = −∇φ(r, t)− 1

c

∂A(r, t)

∂t
. (D.2)

A generalization for quantum systems is best derived via the manifestly Lorentz
invariant action which for a world line beginning at a = (ct1, r2) and ending at
b = (ct2, r2) reads [see, e.g., Landau and Lifschitz (1992)]

S =

b∫

a

(−mc2 dτ −
∑

α

q

c
Aα dxα), (D.3)

Here, dτ = dt/γ, where γ−1 =
√

1− (v/c)2; xα = (ct, r) and Aα = (φ,A) are 4-
vectors. Rewriting (D.3) in terms of a time integral we can identify the Lagrangian

1Here, we use the cgs system. All equations may be transformed into the SI system by multiplying
B, A, and Aα by the speed of light, c.
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(v = ṙ),

L = −mc2
√

1− v2

c2
+
q

c
A · v − qφ. (D.4)

Expressing the Hamiltonian,

H = v · ∂L
∂v
− L =

mc2
√

1− v2

c2

+ qφ, (D.5)

in terms of the canonical momentum p (component-wise derivative),

p =
∂L
∂v

=
mv

√

1− v2

c2

+
q

c
A (D.6)

one arrives at the final relativistic expression,

H(p, r, t) =

√

m2c4 + c2
(

p− q

c
A(r, t)

)2

+ qφ(r, t) (D.7)

≈ mc2
(

1 +
1

2

(p− e
c
A(r, t)

mc

)2

− 1

4

(p− e
c
A(r, t)

mc

)4
)

+ qφ(r, t) . (D.8)

In the nonrelativistic limit, only the leading nonconstant term needs to be kept,

H(p, r, t) ≈ H +
1

2m

(

p− q

c
A(r, t)

)2

+ qφ(r, t). (D.9)

The Lorentz force given in (D.1) is easily reproduced from the corresponding La-
grangian.

The potentials A, φ are not uniquely defined by the physical fields E, B; the
latter remain unchanged under a gauge transformation

A(r, t) −→ A′(r, t) = A(r, t) +∇χ(r, t) (D.10)

φ(r, t) −→ φ′(r, t) = φ(r, t)− 1

c

∂χ(r, t)

∂t
. (D.11)

The Coulomb gauge ∇ ·A = 0 (also called transverse gauge) is particularly suitable
for the study of interacting electron systems, because φ acts instantaneously in this
case. An oscillatory electric field is then represented by the field A only. Note that
this treatment implies an infinitely growing vector potential in the limit ω → 0 which
at least a priori gives reason for caution in connection with linear response theory.
The final expressions for the dc conductivity can, however, also be computed directly
with the same result (Luttinger, 1964; Mahan, 1990).

D.2 Linear Response Theory

Let a system be subjected to a time-dependent perturbation F (t) which couples
through an operator Â,

Ĥ(t) = Ĥ0 + Ĥ1(t) = Ĥ0 − ÂF (t) . (D.12)
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We assume that the function is switched on adiabatically,

F (t)
t→−∞−→ 0;

∣
∣
d

dt
F (t)

∣
∣ <∞ . (D.13)

Then, the evolution of the density operator for an ensemble of perturbed systems at
finite temperature from the unperturbed density operator,

ρ̂0 =
1

Z0

e−βĤ0 , Z0 = Tr
{
e−βĤ0

}
=
∑

n

e−βEn , (D.14)

is determined by the von Neumann equation,

ρ̂(t = −∞) = ρ̂0; i~
d

dt
ρ̂(t) = [Ĥ(t), ρ̂(t)] . (D.15)

Due to the invariance of the trace with respect to cyclical permutations, expecta-
tion values of operators may be equivalently expressed in the Schrödinger or in the
interaction picture,

〈B̂〉F := Tr
{
B̂ ρ̂(t)

}
= Tr

{
B̂I(t) ρ̂I(t)

}
. (D.16)

Here, we denote expectation values in the perturbed ensemble as 〈. . . 〉F and operators

in the interaction picture as X̂I(t) := eiĤ0t/~X̂e−iĤ0t/~. The corresponding equation
of motion for the density operator plus the initial condition are equivalent to the
integral equation

ρ̂I(t) = ρ̂0 +
i

~

t∫

−∞

dt′ [ÂI(t
′), ρ̂I(t

′)]F (t′) , (D.17)

which may be solved iteratively. Inserting the unperturbed density operator in the
right hand side of (D.17) yields the lowest order (i.e., linear) correction. Using
Tr
{
B̂I(t)[ÂI(t), ρ̂0]

}
= Tr

{
ρ̂0[B̂I(t), ÂI(t)]

}
one, thus, obtains to linear order

〈B̂〉F (t) = 〈B̂〉0 +

∞∫

−∞

dt′ F (t′)χB̂,Â(t, t′) , (D.18)

with the retarded susceptibility

χB̂,Â(t, t′) =
i

~
〈[B̂I(t), ÂI(t

′)]〉0Θ(t− t′) . (D.19)

Specializing on harmonic time dependence of the perturbation,

F (t) = F0e
−i(ω+iδ)t, (D.20)

one can also derive the formulation in frequency space,

〈B̂〉F (ω) = 〈B̂〉0 + 〈〈B̂, Â〉〉(ω + iδ)F (ω) (D.21)
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using the definition

〈〈B̂, Â〉〉(ω + iδ) ≡ χB̂,Â(ω + iδ) =
i

~

∞∫

0

dt〈[B̂I(t), Â]〉0 ei(ω+iδ)t . (D.22)

Performing the trace for an eigenbasis of the unperturbed Hamiltonian, inserting the
identity 1 =

∑

m |m〉〈m| between the operators, and reordering terms one obtains
the (thermal) spectral representation,

〈〈B̂, Â〉〉(ω + iδ) =
i

~

1

Z0

∑

n,m

e−βEn

∞∫

0

dt
(

eit(ω+iδ+ En−Em
~

)〈n|B̂|m〉〈m|Â|n〉

− eit(ω+iδ−En−Em
~

)〈n|Â|m〉〈m|B̂|n〉
)

(D.23)

= − 1

Z0

∑

n,m

〈n|B̂|m〉〈m|Â|n〉
~(ω + iδ) + En − Em

(
e−βEn − e−βEm

)
. (D.24)

If we further assume that the spectrum of Ĥ0 is bounded, we find from (D.24) for
the limiting behavior,

〈〈B̂, Â〉〉(ω + iδ)
ω→∞−→ − 1

~ω
〈[B̂, Â]〉0 +O

( 1

ω2

)
. (D.25)

For the usual case Â = B̂ the leading term in (D.25) vanishes so that the susceptibility
χB̂,B̂ then falls off at least as 1/ω2. Finally, the imaginary part of the susceptibility

can be simplified when 〈n|B̂|m〉〈m|Â|n〉 is real. In particular, one obtains for B̂ = Â†

(i.e., for B̂ = Â when Â is hermitian),

Im 〈〈B̂†, B̂〉〉(ω) =
π

~Z0

∑

n,m

∣
∣〈m|B̂|n〉

∣
∣
2
δ(ω +

En − Em
~

)
(
e−βEn − e−βEm

)
(D.26)

T→0−→ π

~

∑

m

∣
∣〈m|B̂|0〉

∣
∣
2(
δ(ω − Em − E0

~
)− δ(ω +

Em − E0

~
)
)
.(D.27)
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Ulmke, M., V. Janǐs, and D. Vollhardt, 1995, Phys. Rev. B 51, 10411. 19

v. Baltz, R., 1997, in Spectroscopy and Dynamics of Collective Excitations in Solids,
edited by D. Bartolo (Plenum Press, New York), p. 303. 178

van Dongen, P. G. J., 1994a, Phys. Rev. B 50, 14016. 11

van Dongen, P. G. J., 1994b, Phys. Rev. B 49, 7904. 11

van Dongen, P. G. J., 1994c, Phys. Rev. Lett. 72, 3258. 18

van Dongen, P. G. J., 1997, private communication. 291, 293

van Dongen, P. G. J., 2000, private communication. 127

van Dongen, P. G. J., 2001, private communication. 29, 51



320 Bibliography

van Dongen, P. G. J., and D. Vollhardt, 1989, Phys. Rev. B 40, 7252. 15, 43

van Dongen, P. G. J., F. Gebhard, and D. Vollhardt, 1989, Z. Phys. B 76, 199. 14

Varma, C. M., S. Schmitt-Rink, and E. Abrahams, 1987, Solid State Commun.
62, 681. 283

Vlaming, R., and D. Vollhardt, 1992, Phys. Rev. B 45, 4637. 18

von Barth, U., and L. Hedin, 1972, J. Phys. C 5, 1629. 250

Vosko, S. H., and L. H. Wilk, 1980, Phys. Rev. B 22, 3812. 250
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Néel temperature . . 71, 72, 139, 140, 247,
247f

Natural boundary conditions . . . . . . . . . 85

Nearest-neighbor (NN) pairs . . . . . . . 9, 27

Nernst’s law . . . . . . . . . . . . . . . . . . . . 174, 279

Nesting direction . . . . . . . . . . . . . . . . . . . . 285

New York metric . . . . . . . . . . . . . . . . . . . . . 30

Newton scheme . . . . . . . . . . . . . . . . . 228, 269

Next-nearest neighbors (NNN) 27, 41, 45,
139

Non-crossing approximation (NCA) . . 18,
243, 255, 258

Nonequivalent ions (in compound) 11, 282

Nongeneric momenta 14, 61, 241, 284–286

Noninteracting electrons . . . 1, 8, 27, 185,
188, 195, 207, 240, 298

Nonperturbative approaches . . 2, 11f, 279

Norm of vector . . . . . . . . . . . . . . . . . . 29f, 284

Normalization . . . . . . . . . . . . . . . . . . . . . . . 229

Numerical procedure . . . . . . . . . . . . 226–230

Numerical renormalization group (NRG)
18, 82, 110, 129, 131, 171, 172

Nyquist’s theorem/frequency . 24, 84, 86,
161, 264, 297, 299

Observable . . . . . . . . . . . . . . . . . . . 17, 93, 173

Occupancy (density) . . . . . . . . . . . . . . . . . . . 9

Occupation number formalism . . . . . . . . . 8

Octahedra . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

On-site energy . . . . . . . . . . . . . . . . . . 252, 282

Optical conductivity . . . . . . . . . . . . . . . 3, 23,
28, 182, 185, 175–244, 255, 262, 271,
272, 273, 274, 268–276, 280, 291

for Bravais lattices . . . . . . . . . . . . . . 190

for continuum systems . . . . . . . . . . 187

for disordered systems . . . . . . . . . . . 213

for hc lattices . . . . . . . . . . . . . . 189, 194

for stacked lattices . . . . . . . . . 207, 211

in terms of polarization . . . . . . . . . 191

in the limit d→∞ . . . . . . . . . 192–198

numerical results for . . . . . . . . 233–241

Orbital degrees of freedom . . 71, 254, 281

Orbital order . . . . . . . . . . . . . . . . . . . . . . . . 252

Orbitals eg, t2g . . . . . . . . . . . . . . . . . . . . . . 281

Order parameter . . . . . . . . 69, 74, 104, 136

Orthorhomic distortion . . . . . . . . 246f, 260

Oscillations . . . . . . . . . . . . . . . . . . . . . 164, 299

Outlier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Oversampled data . . . . . . . . . . . . . . . 25, 156

Oversampling . . . . . . . . . . . . . . . . 85, 90, 299
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