|
Menu
Links
nils-uni@bluemer.name
|
|
Prof. Dr. Nils Blümer |

|
Attention: these pages are mostly outdated! For current information on Nils Blümer, see web pages at the KU.
Mott-Hubbard Metal-Insulator Transition and Optical Conductivity in High Dimensions
by Nils Blümer
(Shaker Verlag, ISBN 3-8322-2320-7)
Index
| Absorption coefficient | | 179 |
| Abstract models | | 1, 5, 184, 199 |
| Adiabatic approximation | | 7 |
| Adiabatic switching on | | 307 |
| Analytic continuation | | 19, 23, 25, 160 |
| Analyticity | | 159, 178f, 229, 297 |
| Anderson localization | | 2, 40, 70, 283 |
| Angle, bond | | 199, 246, 291 |
| Angular momentum | | 281, 284 |
| Antiferromagnetism (AF) | | 10, 12, 67, 70f, |
| | 139, 162, 207, 247f, 252, 255, 259, 277, 279, 284 |
| Asymmetry of DOS | | 27, 39, 41, 64, 71, 139, 141, 174, 222 |
| Atomic radii, effective | | 69 |
| Atomic sphere approximation (ASA) | | 251 |
| Autocorrelation | | 22, 25, 153 |
| Auxiliary (binary) field | | 20 |
| Average over spins, bands | | 264 |
| Bethe lattice | | 27, 39, 40, 175, 199 |
| optical conductivity for | | 198-211, 242 |
| redefined | | 53, 213, 234, 243 |
| stacked | | 210, 204-211, 236 |
| Bethe-Peierls approximation | | 40f |
| Bipartite lattice | | 14, 32, 41, 291 |
| Bravais lattice | | 189, 209, 291 |
| Brillouin zone | | 1, 32, 285 |
| Broadening (Gaussian, Lorentzian) | | 259, 261 |
| Bubble diagram | | 193, 196, 207, 212, 217 |
| Cellular/cluster dynamical mean-field theory (CDMFT) | | 287 |
| Central limit theorem | | 14, 21 |
| Charge density wave (CDW) | | 283 |
| Chemical potential | | 257, 261 |
| Clausius-Clapeyron equation | | 123 |
| Coexistence points | | 110, 113 |
| Coexistence region | | 68, 79, 88, 108-113, 144, 173, 279 |
| boundaries of | | 89, 100, 102, 109f |
| Coherence | | 176, 205, 207, 216-219, 234, 236, 243 |
| Coherent potential approximation (CPA) | | 254 |
| Computational cost (of QMC) | | 20, 23, 106 |
| Conserving approximation | | 11, 73, 79 |
| Convergence | | 65, 91, 96, 145, 151, 153 |
| Correlation | | 1, 248, 264, 266, 280 |
| Correlation function | | 25, 192, 206, 212, 218, 243, 308 |
| Corundum structure | | 69, 69 |
| Coulomb gauge | | 6, 186, 306 |
| Coulomb interaction | | 1, 5, 9, 249 |
| on-site | | see Hubbard interaction |
| Covariance matrix | | 155, 156f |
| end point | | 70, 74, 109, 112, 146, 153, 174 |
| slowing down | | 146, 150-155 |
| density (operator) | | 184, 188, 190, 205 |
| Default model | | 26, 161, 160-163, 226, 262 |
| Density (operator) | | 27, 181, 249, 307 |
| Density distribution | | 249f |
| Density functional theory (DFT) | | 249-255, 280 |
| Density matrix renormalization group (DMRG) | | 289 |
| Density of states (DOS) | | 14, 27, 42, 64, 175, 226, 255, 289 |
| asymmetric model | | 43, 43, 62 |
| general construction of | | 58, 60, 61, 47-64 |
| hyperdiamond | | 292, 294, 295 |
| interacting | | see Spectral funktion |
| LDA (for La1-xSrxTiO3) | | 256, 269 |
| semi-elliptic (Bethe) | | 18, 42, 67, 176, 213, 242, 280, 297 |
| Density-density interaction | | 253 |
| Derivative | | 24, 124, 195, 297 |
| Dielectric function | | 177, 179, 179, 182 |
| transverse vs. longitudinal | | 178 |
| Differential equation | | 121, 123 |
| linearized | | 116, 124, 132, 173 |
| finite | | 59, 214, 217, 219-222, 268, 279, 284 |
| limit of infinite | | 11, 175, 193, 243 |
| Discretization (of imaginary time) | | 19, 159, 261-265, 280, 297-304 |
| Disorder | | 40, 46, 64, 69, 184, |
| | 211-213, 236, 243, 254, 260, 273, 275, 277, 283 |
| Dispersion | | 1, 27f, 47, 192, 197, 293 |
| Doping | | 69, 243, 247, 255, 276 |
| Double occupancy | | 9, 73, 79, 80, 91, 93, 94, 98, 104, |
| | 113-121, 121, 128, 136, 137, 147-154, 262, 304 |
| PSCT estimate for metal | | 127 |
| Drude peak/weight | | 175, 181, 184, 191, 234f, 244, 273 |
| Dynamical cluster approximation (DCA) | | 193, 254, 286-288 |
| Dynamical mean-field theory (DMFT) | | 2, 11, 11-18, 73, 254, 279, 284, 297 |
| Dyson equation | | 16, 227, 254 |
| numerical inversion of | | 228, 269 |
| Effective interaction | | 2, 7, 252 |
| Electromagnetic field | | 259, 305-308 |
| Electron-phonon interaction | | 244, 283 |
| Electronic energy loss spectroscopy (EELS) | | 175, 179, 182f, 273 |
| Energy | | 61, 77, 95, 98, 100-108, 121, 130, 249, 255 |
| fit for insulator | | 97, 97, 98 |
| linearity in U | | 95f, 100, 107 |
| Ensemble of systems | | 6, 73 |
| Entropy | | 73, 105, 121, 123, 126, 174, 279 |
| Errors | | 90, 159, 162, 261-265, 299 |
| Exact diagonalization (ED) | | 18, 80, 81, 111, 129, 131, 141, 243, 289 |
| Exchange-correlation energy | | 250 |
| Expectation value | | 31, 186, 195, 307 |
| Experimental results | | 70, 68-71, 181-183, 273-275 |
| Extrapolation | | 89, 93, 96, 104, 178, 263 |
| f-sum rule | | 179-181, 191, 201, 220, 241, 241, 242, 243f, 280 |
| within the DMFT | | 195-198, 211 |
| Face-centered cubic (fcc) lattice | | 32, 34, 36, 219, 220 |
| Fermi liquid | | 76, 129, 170, 205, 230 |
| Fermi surface | | 32, 281, 285 |
| | 201, 215, 219, 223, 226, 239, 268, 269, 271, 292f |
| averaged squared | | 51, 55, 56 |
| Ferromagnetism | | 10, 62, 255, 283 |
| First-order phase transition | | 70, 74, 79, 104, 173, 279 |
| Fluctuation matrix | | 146, 151 |
| Fluctuation-exchange approximation (FLEX) | | 18, 254 |
| Fourier transformation (FT) | | 17, 19, 82, 84, 87f, 159, 177, 262, 297-304 |
| comparison of FT schemes | | 87 |
| Free energy | | 73, 121, 126, 134, 173 |
| direct evaluation of | | 144-146 |
| gradient of | | 142-144, 145, 152 |
| Frequency (grid) | | 157, 255 |
| Frustration | | 27, 38, 46, 64, 71 |
| partial | | 138-142, 174, 222-225, 279 |
| Fully connected model | | 43, 46 |
| Functional integral | | 17, 20 |
| Gap | | 96, 157, 159, 231, 247, 251 |
| General dispersion formalism | | 51, 64, 176, 197, 213-216, 234, 243, 276 |
| Ginzburg-Landau functional | | 73, 142f, 146 |
| fit to | | 147, 148, 149, 150, 147-150 |
| Green function | | 15, 22, 41, |
| | 143, 175, 192, 203, 207, 212, 254, 287, 297-304 |
| analytic properties of | | 84 |
| high-frequency expansion of | | 44 |
| momentum dependent | | 78, 193 |
| of imaginary time | | 136, 155, 160, 166f, 263, 298 |
| Ground state | | 173, 249, 279 |
| Gutzwiller wave function | | 80 |
| Half-filled Hubbard model | | 71, 242 |
| Hamiltonian | | 186, 210, 249 |
| Hartree interaction | | 8, 13, 30, 250 |
| Hartree-Fock (HF) theory | | 10, 251 |
| Heisenberg model/interaction | | 10, 12, 282 |
| Hermite polynomials | | 49, 50 |
| High-frequency expansion | | 298 |
| High-temperature expansion | | 19 |
| Hilbert transformation | | 75 |
| Historical development | | 110 |
| Holstein-Hubbard model | | 283 |
| Honeycomb lattice | | 291, 294, 296 |
| Hopping amplitude | | 9, 27, 53, 175, 199, 252, 282, 287, 295 |
| Hopping range | | 27, 65, 141, 268 |
| Hubbard bands (upper, lower) | | 257f |
| Hubbard interaction | | 27, 122, 184, 279, 282 |
| estimate from LDA | | 253, 256 |
| single-band | | 5, 9, 245, 279 |
| Hubbard-I approximation | | 254 |
| Hubbard-Stratonovich transformation | | 20 |
| Hund's rule couplings | | 282 |
| Hybridization | | 17, 69, 254, 260, 277 |
| Hybridization function | | 143, 146 |
| | 29, 32, 71, 188, 192, 197f, 219, 243, 279, 284 |
| Hyperdiamond (hd) lattice | | 222, 291-296 |
| Imaginary time/axis | | 19, 82, 155, 255, 297 |
| Index of diffraction | | 177, 179 |
| Insulator | | 2, 96-99, 178, 239, 247, 279 |
| Interaction induced MIT | | 67 |
| Interband excitation | | 184, 272 |
| Ising model/interaction | | 13, 40, 282 |
| Isostructural transition | | 70 |
| | 28, 47, 177, 210, 213, 217, 243, 291, 293, 296 |
| Iterated perturbation theory (IPT) | | 18, 71, 79, 80f, |
| | 82, 110, 127, 147, 147, 174, 243, 255, 258, 303 |
| Iteration scheme (in DMFT) | | 75, 144 |
| Kernel, fermion | | 23, 24, 157 |
| | 47, 78, 94, 95, 201, 205, 211, 249-251, 289 |
| Kohn-Sham equations | | 250, 252 |
| Kondo interaction | | 11, 282 |
| Kramers-Kronig trafo/analysis | | 178, 180, 227, 230, 269 |
| Kubo formalism | | 186-191, 243 |
| Lagrange parameter | | 26, 157, 252 |
| Landau Fermi-liquid theory | | 2, 126 |
| Landau-Ginzburg theory | | 104 |
| Lanthanum strontium titanate | | 3, 157, 246-248, 276, 280, 283 |
| LDA+DMFT method | | 3, 245, 251-255, 276, 280 |
| Least squares fit | | 25, 96, 100 |
| Level number | | 40, 199, 201 |
| Limit of infinite dimensions | | 11 |
| Linear augmented plane wave (LAPW) | | 251 |
| Linear muffin-tin orbital (LMTO) | | 251 |
| Linear response | | 176, 306-308 |
| density approximation (LDA) | | 248, 250 |
| spin density approximation (LSDA) | | 250 |
| Long-wavelength limit | | 177, 180, 187f |
| Loops | | 40, 64, 198, 209, 207-209 |
| Lorentz oscillator model | | 178 |
| Low-temperature asymptotics | | 125-131, 133, 173 |
| Luttinger theorem | | 76, 166 |
| Magnetic field | | 223, 249, 305 |
| Mass renormalization | | 76, 94, 181 |
| Material-specific calculation | | 245 |
| Matsubara frequencies | | 16, 82, 297 |
| Maximum entropy method | | 25, 155-165, 174, 226, 257, 262, 264, 276 |
| Mean-field theory | | 11, 17, 73, 185 |
| Mean-free path, effective | | 46, 205, 259 |
| Measurement (within QMC) | | 91 |
| Message passing interface (MPI) | | 92 |
| Metal-insulator transition (MIT) | | 2, 12, 67-175, 244, 247, 276, 279f |
| Metastable solution/phase | | 74 |
| Metropolis transition rule | | 22 |
| Minus-sign problem | | 21, 23, 282 |
| Model Hamiltonian approaches | | 1 |
| Momentum | | 1, 8, 177, 184, 199, 284-286 |
| distribution function | | 195, 241, 242 |
| Muffin tin orbital (MTO) | | 251 |
| Néel temperature | | 71, 72, 139, 140, 247, 247f |
| Natural boundary conditions | | 85 |
| Nearest-neighbor (NN) pairs | | 9, 27 |
| Next-nearest neighbors (NNN) | | 27, 41, 45, 139 |
| Non-crossing approximation (NCA) | | 18, 243, 255, 258 |
| Nonequivalent ions (in compound) | | 11, 282 |
| Nongeneric momenta | | 14, 61, 241, 284-286 |
| Noninteracting electrons | | 1, 8, 27, 185, 188, 195, 207, 240, 298 |
| Nonperturbative approaches | | 2, 11f, 279 |
| Numerical procedure | | 226-230 |
| Numerical renormalization group (NRG) | | 18, 82, 110, 129, 131, 171, 172 |
| Nyquist's theorem/frequency | | 24, 84, 86, 161, 264, 297, 299 |
| Occupation number formalism | | 8 |
| Optical conductivity | | 3, 23, 28, 182, 185, 175-244, |
| | 255, 262, 271, 272, 273, 274, 268-276, 280, 291 |
| for continuum systems | | 187 |
| for disordered systems | | 213 |
| for stacked lattices | | 207, 211 |
| in terms of polarization | | 191 |
| numerical results for | | 233-241 |
| Orbital degrees of freedom | | 71, 254, 281 |
| Order parameter | | 69, 74, 104, 136 |
| Orthorhomic distortion | | 246f, 260 |
| Paramagnetic insulator (PI) | | 67 |
| Paramagnetic metal (PM) | | 67 |
| Particle-hole transformation | | 32 |
| Partition function | | 17, 20, 22, 122 |
| Pauli exclusion principle | | 1 |
| Pearson's coefficient | | 156 |
| Periodic boundary conditions | | 288 |
| Periodically stacked lattices | | 209-211, 217 |
| Perturbation expansion, diagrammatic | | 15, 30, 192 |
| Phase diagram | | 3, 72, 80f, 83, 109f, 135, 155, 163, 247, 279 |
| Phase transition | | 131, 162 |
| characterization of | | 73-79 |
| Phenomenological theory | | 1 |
| Photoemission spectroscopy (PES) | | 23, |
| | 245, 248, 255, 258, 260f, 267, 276, 280 |
| Plasma frequency | | 179-181, 187 |
| Polarization | | 7, 176, 181, 190 |
| Potential energy | | 1, 94, 95 |
| Primitive lattice vector | | 291 |
| Probability distribution | | 21, 26, 158, 285f |
| Projective self-consistent technique (PSCT) | | 82, 111, 126f, 129 |
| Quantum Monte-Carlo | | 2, 18, 173, 226, 242, 250, 255, 279f, 282, 297 |
| Quasiparticle | | 2, 25, 104, 170 |
| | 94, 129, 130f, 133, 173, 191, 257, 276, 299, 303 |
| Random dispersion approximation (RDA) | | 15, 81, 112, 288 |
| Random number generator | | 92 |
| Realistic modeling | | 245, 280 |
| Reflectivity | | 175, 178, 179, 182 |
| Relativistic effects | | 6, 180, 284, 306 |
| Renormalization group (RG) | | 10 |
| Renormalized perturbation expansion (RPE) | | 39, 44 |
| Root-finding algorithm | | 54, 228 |
| Scenarios for MIT | | 79, 89, 139 |
| Scheme | | 17, 31, 40f, 69, 75, 139f, 142, 145, |
| | 179, 184f, 199, 205f, 208-210, 227, 246, 287f, 294 |
| Self energy | | 16, 76, 193, 254, 264, 297-299 |
| for real frequencies | | 226, 229, 231, 232, 230-233, 270 |
| on imaginary axis | | 87f, 300-303 |
| Self-consistency condition, modified | | 136 |
| Self-consistency cycle in DMFT | | 17, 17, 75, 75, 82, 288 |
| Self-interaction correction (SIC) | | 251f |
| Single-band assumption | | 27, 281 |
| Single-impurity Anderson model (SIAM) | | 11, 16, 19 |
| Single-particle problem | | 249 |
| Singular behavior | | 74, 146 |
| Singular value decomposition (SVD) | | 157 |
| Smoothing trick | | 86, 159, 262, 301 |
| Specific heat | | 78, 96, 123, 173, 247 |
| linear coefficient of | | 126, 129, 133, 135 |
| | 155, 163, 168f, 171f, 174, 226, 257f, 261, 265f, 276 |
| Spectral representation | | 23, 308 |
| Spectrum | | see Spectral funktion |
| Spin-orbit interaction | | 284 |
| Spline interpolation | | 85, 297 |
| Square-root singularity | | 34, 43 |
| State (initial, final) | | 259 |
| Strongly correlated electron systems | | 2, 5, 67, 245, 280 |
| Superconductivity | | 2, 10, 79, 246, 283, 288 |
| Susceptibilities | | 28, 147, 187, 247, 276 |
| Sweeps (warmup, measurement) | | 22, 90 |
| Symmetry | | 177, 187, 247, 281f, 288, 291, 293, 295 |
| t-t' hopping | | 36, 221, 222-225, 269 |
| Temperature | | 27, 121, 255, 258, 260, 265, 275, 277, 279 |
| Thermalization of Ising field | | 90 |
| Thermodynamic (in)consistency | | 11, 79 |
| Thermodynamic limit | | 12, 200, 249, 289 |
| Thermodynamic MIT line | | 68, 111, 123, 121-138, 173 |
| Thomas-Fermi approximation | | 251 |
| Thomas-Reiche-Kuhn oscillator sum rule | | 179 |
| Tight-binding linear muffin-tin orbital (TB-LMTO) | | 251f, 256 |
| Trace (in simulation time) | | 151, 152-154 |
| Transformation function | | 49, 53, 197 |
| Transformation technique | | 137, 146 |
| Transition metal compound/oxide | | 2, 248, 246-248, 280 |
| Transmission experiments | | 28, 51, 177 |
| characteristics | | 214-216, 219-222, 224f |
| properties | | 175, 210, 269, 279, 295 |
| Tree (in graph theory) | | 40, 198 |
| Trotter-Suzuki decomposition | | 19, 164 |
| Two-particle properties | | 28, 289 |
| Ultraviolet photoemission spectroscopy (UVS) | | 258 |
| Umklapp scattering | | 244, 286 |
| Van-Hove singularities | | 32, 215, 219 |
| Vanadium oxide | | 68f, 70, 279 |
| Varma-Schmitt-Rink-Abrahams model | | 283 |
| Wannier functions | | 8, 188, 199 |
| Weiss mean-field approximation | | 12, 17 |
| X-ray absorption spectroscopy (XAS) | | 23, 267, 280 |
| X-ray photoemission spectroscopy (XPS) | | 258 |
| 1/Z expansion/corrections | | 13, 18, 175 |
| |
Red/bold page numbers: main entry, blue/italic page numbers: figures.
|