Menu
Links
nils-uni@bluemer.name
|
|
Prof. Dr. Nils Blümer |

|
Attention: these pages are mostly outdated! For current information on Nils Blümer, see web pages at the KU.
Mott-Hubbard Metal-Insulator Transition and Optical Conductivity in High Dimensions
by Nils Blümer
(Shaker Verlag, ISBN 3-8322-2320-7)
Index
Absorption coefficient | | 179 |
Abstract models | | 1, 5, 184, 199 |
Adiabatic approximation | | 7 |
Adiabatic switching on | | 307 |
Analytic continuation | | 19, 23, 25, 160 |
Analyticity | | 159, 178f, 229, 297 |
Anderson localization | | 2, 40, 70, 283 |
Angle, bond | | 199, 246, 291 |
Angular momentum | | 281, 284 |
Antiferromagnetism (AF) | | 10, 12, 67, 70f, |
| | 139, 162, 207, 247f, 252, 255, 259, 277, 279, 284 |
Asymmetry of DOS | | 27, 39, 41, 64, 71, 139, 141, 174, 222 |
Atomic radii, effective | | 69 |
Atomic sphere approximation (ASA) | | 251 |
Autocorrelation | | 22, 25, 153 |
Auxiliary (binary) field | | 20 |
Average over spins, bands | | 264 |
Bethe lattice | | 27, 39, 40, 175, 199 |
optical conductivity for | | 198-211, 242 |
redefined | | 53, 213, 234, 243 |
stacked | | 210, 204-211, 236 |
Bethe-Peierls approximation | | 40f |
Bipartite lattice | | 14, 32, 41, 291 |
Bravais lattice | | 189, 209, 291 |
Brillouin zone | | 1, 32, 285 |
Broadening (Gaussian, Lorentzian) | | 259, 261 |
Bubble diagram | | 193, 196, 207, 212, 217 |
Cellular/cluster dynamical mean-field theory (CDMFT) | | 287 |
Central limit theorem | | 14, 21 |
Charge density wave (CDW) | | 283 |
Chemical potential | | 257, 261 |
Clausius-Clapeyron equation | | 123 |
Coexistence points | | 110, 113 |
Coexistence region | | 68, 79, 88, 108-113, 144, 173, 279 |
boundaries of | | 89, 100, 102, 109f |
Coherence | | 176, 205, 207, 216-219, 234, 236, 243 |
Coherent potential approximation (CPA) | | 254 |
Computational cost (of QMC) | | 20, 23, 106 |
Conserving approximation | | 11, 73, 79 |
Convergence | | 65, 91, 96, 145, 151, 153 |
Correlation | | 1, 248, 264, 266, 280 |
Correlation function | | 25, 192, 206, 212, 218, 243, 308 |
Corundum structure | | 69, 69 |
Coulomb gauge | | 6, 186, 306 |
Coulomb interaction | | 1, 5, 9, 249 |
on-site | | see Hubbard interaction |
Covariance matrix | | 155, 156f |
end point | | 70, 74, 109, 112, 146, 153, 174 |
slowing down | | 146, 150-155 |
density (operator) | | 184, 188, 190, 205 |
Default model | | 26, 161, 160-163, 226, 262 |
Density (operator) | | 27, 181, 249, 307 |
Density distribution | | 249f |
Density functional theory (DFT) | | 249-255, 280 |
Density matrix renormalization group (DMRG) | | 289 |
Density of states (DOS) | | 14, 27, 42, 64, 175, 226, 255, 289 |
asymmetric model | | 43, 43, 62 |
general construction of | | 58, 60, 61, 47-64 |
hyperdiamond | | 292, 294, 295 |
interacting | | see Spectral funktion |
LDA (for La1-xSrxTiO3) | | 256, 269 |
semi-elliptic (Bethe) | | 18, 42, 67, 176, 213, 242, 280, 297 |
Density-density interaction | | 253 |
Derivative | | 24, 124, 195, 297 |
Dielectric function | | 177, 179, 179, 182 |
transverse vs. longitudinal | | 178 |
Differential equation | | 121, 123 |
linearized | | 116, 124, 132, 173 |
finite | | 59, 214, 217, 219-222, 268, 279, 284 |
limit of infinite | | 11, 175, 193, 243 |
Discretization (of imaginary time) | | 19, 159, 261-265, 280, 297-304 |
Disorder | | 40, 46, 64, 69, 184, |
| | 211-213, 236, 243, 254, 260, 273, 275, 277, 283 |
Dispersion | | 1, 27f, 47, 192, 197, 293 |
Doping | | 69, 243, 247, 255, 276 |
Double occupancy | | 9, 73, 79, 80, 91, 93, 94, 98, 104, |
| | 113-121, 121, 128, 136, 137, 147-154, 262, 304 |
PSCT estimate for metal | | 127 |
Drude peak/weight | | 175, 181, 184, 191, 234f, 244, 273 |
Dynamical cluster approximation (DCA) | | 193, 254, 286-288 |
Dynamical mean-field theory (DMFT) | | 2, 11, 11-18, 73, 254, 279, 284, 297 |
Dyson equation | | 16, 227, 254 |
numerical inversion of | | 228, 269 |
Effective interaction | | 2, 7, 252 |
Electromagnetic field | | 259, 305-308 |
Electron-phonon interaction | | 244, 283 |
Electronic energy loss spectroscopy (EELS) | | 175, 179, 182f, 273 |
Energy | | 61, 77, 95, 98, 100-108, 121, 130, 249, 255 |
fit for insulator | | 97, 97, 98 |
linearity in U | | 95f, 100, 107 |
Ensemble of systems | | 6, 73 |
Entropy | | 73, 105, 121, 123, 126, 174, 279 |
Errors | | 90, 159, 162, 261-265, 299 |
Exact diagonalization (ED) | | 18, 80, 81, 111, 129, 131, 141, 243, 289 |
Exchange-correlation energy | | 250 |
Expectation value | | 31, 186, 195, 307 |
Experimental results | | 70, 68-71, 181-183, 273-275 |
Extrapolation | | 89, 93, 96, 104, 178, 263 |
f-sum rule | | 179-181, 191, 201, 220, 241, 241, 242, 243f, 280 |
within the DMFT | | 195-198, 211 |
Face-centered cubic (fcc) lattice | | 32, 34, 36, 219, 220 |
Fermi liquid | | 76, 129, 170, 205, 230 |
Fermi surface | | 32, 281, 285 |
| | 201, 215, 219, 223, 226, 239, 268, 269, 271, 292f |
averaged squared | | 51, 55, 56 |
Ferromagnetism | | 10, 62, 255, 283 |
First-order phase transition | | 70, 74, 79, 104, 173, 279 |
Fluctuation matrix | | 146, 151 |
Fluctuation-exchange approximation (FLEX) | | 18, 254 |
Fourier transformation (FT) | | 17, 19, 82, 84, 87f, 159, 177, 262, 297-304 |
comparison of FT schemes | | 87 |
Free energy | | 73, 121, 126, 134, 173 |
direct evaluation of | | 144-146 |
gradient of | | 142-144, 145, 152 |
Frequency (grid) | | 157, 255 |
Frustration | | 27, 38, 46, 64, 71 |
partial | | 138-142, 174, 222-225, 279 |
Fully connected model | | 43, 46 |
Functional integral | | 17, 20 |
Gap | | 96, 157, 159, 231, 247, 251 |
General dispersion formalism | | 51, 64, 176, 197, 213-216, 234, 243, 276 |
Ginzburg-Landau functional | | 73, 142f, 146 |
fit to | | 147, 148, 149, 150, 147-150 |
Green function | | 15, 22, 41, |
| | 143, 175, 192, 203, 207, 212, 254, 287, 297-304 |
analytic properties of | | 84 |
high-frequency expansion of | | 44 |
momentum dependent | | 78, 193 |
of imaginary time | | 136, 155, 160, 166f, 263, 298 |
Ground state | | 173, 249, 279 |
Gutzwiller wave function | | 80 |
Half-filled Hubbard model | | 71, 242 |
Hamiltonian | | 186, 210, 249 |
Hartree interaction | | 8, 13, 30, 250 |
Hartree-Fock (HF) theory | | 10, 251 |
Heisenberg model/interaction | | 10, 12, 282 |
Hermite polynomials | | 49, 50 |
High-frequency expansion | | 298 |
High-temperature expansion | | 19 |
Hilbert transformation | | 75 |
Historical development | | 110 |
Holstein-Hubbard model | | 283 |
Honeycomb lattice | | 291, 294, 296 |
Hopping amplitude | | 9, 27, 53, 175, 199, 252, 282, 287, 295 |
Hopping range | | 27, 65, 141, 268 |
Hubbard bands (upper, lower) | | 257f |
Hubbard interaction | | 27, 122, 184, 279, 282 |
estimate from LDA | | 253, 256 |
single-band | | 5, 9, 245, 279 |
Hubbard-I approximation | | 254 |
Hubbard-Stratonovich transformation | | 20 |
Hund's rule couplings | | 282 |
Hybridization | | 17, 69, 254, 260, 277 |
Hybridization function | | 143, 146 |
| | 29, 32, 71, 188, 192, 197f, 219, 243, 279, 284 |
Hyperdiamond (hd) lattice | | 222, 291-296 |
Imaginary time/axis | | 19, 82, 155, 255, 297 |
Index of diffraction | | 177, 179 |
Insulator | | 2, 96-99, 178, 239, 247, 279 |
Interaction induced MIT | | 67 |
Interband excitation | | 184, 272 |
Ising model/interaction | | 13, 40, 282 |
Isostructural transition | | 70 |
| | 28, 47, 177, 210, 213, 217, 243, 291, 293, 296 |
Iterated perturbation theory (IPT) | | 18, 71, 79, 80f, |
| | 82, 110, 127, 147, 147, 174, 243, 255, 258, 303 |
Iteration scheme (in DMFT) | | 75, 144 |
Kernel, fermion | | 23, 24, 157 |
| | 47, 78, 94, 95, 201, 205, 211, 249-251, 289 |
Kohn-Sham equations | | 250, 252 |
Kondo interaction | | 11, 282 |
Kramers-Kronig trafo/analysis | | 178, 180, 227, 230, 269 |
Kubo formalism | | 186-191, 243 |
Lagrange parameter | | 26, 157, 252 |
Landau Fermi-liquid theory | | 2, 126 |
Landau-Ginzburg theory | | 104 |
Lanthanum strontium titanate | | 3, 157, 246-248, 276, 280, 283 |
LDA+DMFT method | | 3, 245, 251-255, 276, 280 |
Least squares fit | | 25, 96, 100 |
Level number | | 40, 199, 201 |
Limit of infinite dimensions | | 11 |
Linear augmented plane wave (LAPW) | | 251 |
Linear muffin-tin orbital (LMTO) | | 251 |
Linear response | | 176, 306-308 |
density approximation (LDA) | | 248, 250 |
spin density approximation (LSDA) | | 250 |
Long-wavelength limit | | 177, 180, 187f |
Loops | | 40, 64, 198, 209, 207-209 |
Lorentz oscillator model | | 178 |
Low-temperature asymptotics | | 125-131, 133, 173 |
Luttinger theorem | | 76, 166 |
Magnetic field | | 223, 249, 305 |
Mass renormalization | | 76, 94, 181 |
Material-specific calculation | | 245 |
Matsubara frequencies | | 16, 82, 297 |
Maximum entropy method | | 25, 155-165, 174, 226, 257, 262, 264, 276 |
Mean-field theory | | 11, 17, 73, 185 |
Mean-free path, effective | | 46, 205, 259 |
Measurement (within QMC) | | 91 |
Message passing interface (MPI) | | 92 |
Metal-insulator transition (MIT) | | 2, 12, 67-175, 244, 247, 276, 279f |
Metastable solution/phase | | 74 |
Metropolis transition rule | | 22 |
Minus-sign problem | | 21, 23, 282 |
Model Hamiltonian approaches | | 1 |
Momentum | | 1, 8, 177, 184, 199, 284-286 |
distribution function | | 195, 241, 242 |
Muffin tin orbital (MTO) | | 251 |
Néel temperature | | 71, 72, 139, 140, 247, 247f |
Natural boundary conditions | | 85 |
Nearest-neighbor (NN) pairs | | 9, 27 |
Next-nearest neighbors (NNN) | | 27, 41, 45, 139 |
Non-crossing approximation (NCA) | | 18, 243, 255, 258 |
Nonequivalent ions (in compound) | | 11, 282 |
Nongeneric momenta | | 14, 61, 241, 284-286 |
Noninteracting electrons | | 1, 8, 27, 185, 188, 195, 207, 240, 298 |
Nonperturbative approaches | | 2, 11f, 279 |
Numerical procedure | | 226-230 |
Numerical renormalization group (NRG) | | 18, 82, 110, 129, 131, 171, 172 |
Nyquist's theorem/frequency | | 24, 84, 86, 161, 264, 297, 299 |
Occupation number formalism | | 8 |
Optical conductivity | | 3, 23, 28, 182, 185, 175-244, |
| | 255, 262, 271, 272, 273, 274, 268-276, 280, 291 |
for continuum systems | | 187 |
for disordered systems | | 213 |
for stacked lattices | | 207, 211 |
in terms of polarization | | 191 |
numerical results for | | 233-241 |
Orbital degrees of freedom | | 71, 254, 281 |
Order parameter | | 69, 74, 104, 136 |
Orthorhomic distortion | | 246f, 260 |
Paramagnetic insulator (PI) | | 67 |
Paramagnetic metal (PM) | | 67 |
Particle-hole transformation | | 32 |
Partition function | | 17, 20, 22, 122 |
Pauli exclusion principle | | 1 |
Pearson's coefficient | | 156 |
Periodic boundary conditions | | 288 |
Periodically stacked lattices | | 209-211, 217 |
Perturbation expansion, diagrammatic | | 15, 30, 192 |
Phase diagram | | 3, 72, 80f, 83, 109f, 135, 155, 163, 247, 279 |
Phase transition | | 131, 162 |
characterization of | | 73-79 |
Phenomenological theory | | 1 |
Photoemission spectroscopy (PES) | | 23, |
| | 245, 248, 255, 258, 260f, 267, 276, 280 |
Plasma frequency | | 179-181, 187 |
Polarization | | 7, 176, 181, 190 |
Potential energy | | 1, 94, 95 |
Primitive lattice vector | | 291 |
Probability distribution | | 21, 26, 158, 285f |
Projective self-consistent technique (PSCT) | | 82, 111, 126f, 129 |
Quantum Monte-Carlo | | 2, 18, 173, 226, 242, 250, 255, 279f, 282, 297 |
Quasiparticle | | 2, 25, 104, 170 |
| | 94, 129, 130f, 133, 173, 191, 257, 276, 299, 303 |
Random dispersion approximation (RDA) | | 15, 81, 112, 288 |
Random number generator | | 92 |
Realistic modeling | | 245, 280 |
Reflectivity | | 175, 178, 179, 182 |
Relativistic effects | | 6, 180, 284, 306 |
Renormalization group (RG) | | 10 |
Renormalized perturbation expansion (RPE) | | 39, 44 |
Root-finding algorithm | | 54, 228 |
Scenarios for MIT | | 79, 89, 139 |
Scheme | | 17, 31, 40f, 69, 75, 139f, 142, 145, |
| | 179, 184f, 199, 205f, 208-210, 227, 246, 287f, 294 |
Self energy | | 16, 76, 193, 254, 264, 297-299 |
for real frequencies | | 226, 229, 231, 232, 230-233, 270 |
on imaginary axis | | 87f, 300-303 |
Self-consistency condition, modified | | 136 |
Self-consistency cycle in DMFT | | 17, 17, 75, 75, 82, 288 |
Self-interaction correction (SIC) | | 251f |
Single-band assumption | | 27, 281 |
Single-impurity Anderson model (SIAM) | | 11, 16, 19 |
Single-particle problem | | 249 |
Singular behavior | | 74, 146 |
Singular value decomposition (SVD) | | 157 |
Smoothing trick | | 86, 159, 262, 301 |
Specific heat | | 78, 96, 123, 173, 247 |
linear coefficient of | | 126, 129, 133, 135 |
| | 155, 163, 168f, 171f, 174, 226, 257f, 261, 265f, 276 |
Spectral representation | | 23, 308 |
Spectrum | | see Spectral funktion |
Spin-orbit interaction | | 284 |
Spline interpolation | | 85, 297 |
Square-root singularity | | 34, 43 |
State (initial, final) | | 259 |
Strongly correlated electron systems | | 2, 5, 67, 245, 280 |
Superconductivity | | 2, 10, 79, 246, 283, 288 |
Susceptibilities | | 28, 147, 187, 247, 276 |
Sweeps (warmup, measurement) | | 22, 90 |
Symmetry | | 177, 187, 247, 281f, 288, 291, 293, 295 |
t-t' hopping | | 36, 221, 222-225, 269 |
Temperature | | 27, 121, 255, 258, 260, 265, 275, 277, 279 |
Thermalization of Ising field | | 90 |
Thermodynamic (in)consistency | | 11, 79 |
Thermodynamic limit | | 12, 200, 249, 289 |
Thermodynamic MIT line | | 68, 111, 123, 121-138, 173 |
Thomas-Fermi approximation | | 251 |
Thomas-Reiche-Kuhn oscillator sum rule | | 179 |
Tight-binding linear muffin-tin orbital (TB-LMTO) | | 251f, 256 |
Trace (in simulation time) | | 151, 152-154 |
Transformation function | | 49, 53, 197 |
Transformation technique | | 137, 146 |
Transition metal compound/oxide | | 2, 248, 246-248, 280 |
Transmission experiments | | 28, 51, 177 |
characteristics | | 214-216, 219-222, 224f |
properties | | 175, 210, 269, 279, 295 |
Tree (in graph theory) | | 40, 198 |
Trotter-Suzuki decomposition | | 19, 164 |
Two-particle properties | | 28, 289 |
Ultraviolet photoemission spectroscopy (UVS) | | 258 |
Umklapp scattering | | 244, 286 |
Van-Hove singularities | | 32, 215, 219 |
Vanadium oxide | | 68f, 70, 279 |
Varma-Schmitt-Rink-Abrahams model | | 283 |
Wannier functions | | 8, 188, 199 |
Weiss mean-field approximation | | 12, 17 |
X-ray absorption spectroscopy (XAS) | | 23, 267, 280 |
X-ray photoemission spectroscopy (XPS) | | 258 |
1/Z expansion/corrections | | 13, 18, 175 |
| |
Red/bold page numbers: main entry, blue/italic page numbers: figures.
|