Menu

Homepage
CV
Presentations
Publications
Thesis
> Contents
Abstract
Index
Bibliography
Thumbnails
Lectures
Evaluation
Computing

German version


Links

KOMET 337
    Román Orús
    Matteo Rizzi
    Daniel Rost
Department of Physics
Mainz University
 
Research unit SFB/TR49
Research unit FOR 1346


nils-uni@bluemer.name

Valid HTML 4.01!

Valid HTML 4.01

 

Prof. Dr. Nils Blümer

  Logo Uni Mainz (since 2010)


Attention: these pages are mostly outdated! For current information on Nils Blümer, see web pages at the KU.

Mott-Hubbard Metal-Insulator Transition and Optical Conductivity in High Dimensions

by Nils Blümer (Shaker Verlag, ISBN 3-8322-2320-7)

Table of Contents

Introduction
1
1  Models and Methods
5
1.1  Hubbard Model
5
1.1.1  Solid State Theory for Crystals
6
1.1.2  Electronic Lattice Models
7
1.1.3  Wannier Representation
8
1.1.4  One-band Hubbard Model
9
1.2  Dynamical Mean-Field Theory
11
1.2.1  Limit Z→∞ for Spin Models
12
1.2.2  Limit Z→∞ for Fermions
13
1.2.3  Simplifications for the Hubbard Model in Z→∞
15
1.3  Quantum Monte Carlo Algorithm
19
1.3.1  Wick's Theorem for the Discretized Impurity Problem
19
1.3.2  Monte Carlo Importance Sampling
21
1.4  Maximum Entropy Method
23
2  Lattice and Density of States
27
2.1  Hypercubic Lattice and Extensions
29
2.1.1  Definitions and Analytical Considerations
29
2.1.2  Numerical Results
32
2.1.3  Magnetic Frustration and Asymmetry of the DOS
38
2.2  Bethe Lattice, RPE, and Disorder
39
2.2.1  Bethe Tree, Cayley Tree, and Husimi Cactus
40
2.2.2  Renormalized Perturbation Expansion
43
2.3  General Density of States in d=∞
47
2.4  Redefinition of the Bethe Lattice
53
2.4.1  Model in d=∞
54
2.4.2  Truncating the Hopping Range
57
2.4.3  Finite Dimensionality
59
2.4.4  Application to Asymmetric Model DOS
62
2.5  Conclusion
64
3  Mott Metal-Insulator Transition in the d→∞ Hubbard Model
67
3.1  Motivation
68
3.1.1  Experiment
68
3.1.2  Theory
71
3.2  Characterization of Phase Transitions within the DMFT
73
3.2.1  Transitions of First or Higher Order
73
3.2.2  Convergence of Fixed Point Methods
75
3.2.3  Observables
76
3.3  Phase Diagram: Development until 1999
79
3.4  Discussion of QMC Algorithms
82
3.4.1  Fourier Transformation and Smoothing
84
3.4.2  Overrelaxation and Sweeping Strategies
89
3.4.3  Estimation of Errors
90
3.4.4  Parallelization
92
3.5  Results: Coexistence Region
93
3.5.1  Choice of Observables and Extrapolation
93
3.5.2  Properties of the Insulating Phase
96
3.5.3  Internal Energy
100
3.5.4  Coexistence Phase Diagram
108
3.5.5  Double Occupancy
113
3.6  Results: Thermodynamic Phase Transition Line
121
3.6.1  Differential Equation for dUc/dT and Linearization
121
3.6.2  Low-temperature Asymptotics of U(T)
125
3.6.3  Full Phase Diagram
131
3.6.4  Implications of Partial Frustration
138
3.7  Landau Theory and Criticality
142
3.7.1  Free Energy Functional for the Bethe Lattice
143
3.7.2  Direct Evaluation of Free Energy Differences
144
3.7.3  Critical Behavior Near the MIT
146
3.8  Spectra
155
3.8.1  Maximum Entropy Method for Spectral Functions
155
3.8.2  Algorithmic Choices and Numerical Tests
160
3.8.3  Numerical Results for the Bethe DOS
166
3.9  Conclusion
173
4  Optical Conductivity
175
4.1  Definition and General Properties of the Optical Conductivity
176
4.1.1  Connection between Conductivity and Reflectivity
177
4.1.2  Optical f-sum Rules
179
4.1.3  Experiments
181
4.1.4  Impact of Electronic Model Abstractions
183
4.2  Kubo Formalism
186
4.2.1  Kubo Formalism in the Continuum
186
4.2.2  Kubo Formalism on a Lattice
188
4.2.3  General Confirmation of the f-sum Rule
190
4.3  Optical Conductivity in the Limit d→∞
192
4.3.1  Optical Conductivity for the Hypercubic Lattice
194
4.3.2  f-sum Rule within the DMFT
195
4.3.3  f-sum Rule and General Dispersion Formalism
197
4.4  Optical Conductivity for the Bethe Lattice
198
4.4.1  Treelike Layout of the Bethe Lattice
200
4.4.2  Single-Chain Stacked Bethe Lattice
204
4.4.3  Periodically Stacked Lattices
209
4.4.4  Offdiagonal Disorder
211
4.4.5  General Dispersion Method
213
4.5  Generalizations
216
4.5.1  Coherent versus Incoherent Transport in High Dimensions
216
4.5.2  Optical Conductivity in Finite Dimensions
219
4.5.3  Impact of Frustration by t-t' Hopping
222
4.6  QMC Results for the Bethe Lattice
225
4.6.1  Numerical Procedure for QMC Data
226
4.6.2  Results: Self-Energy on the Real Axis
230
4.6.3  Results: Optical Conductivity
234
4.7  Conclusion
242
5  Realistic Modeling of Strongly Correlated Materials
245
5.1  La1-xSrxTiO3
246
5.2  DFT and LSDA
249
5.3  LDA+DMFT
251
5.4  Results for La1-xSrxTiO3
255
5.4.1  Density of States and Photoemission Spectra
255
5.4.2  Influence of Discretization Errors
261
5.4.3  Optical Conductivity
268
5.5  Conclusion
276
Summary
279
A  Additions to ``Models and Methods''
281
A.1  Extensions of the Hubbard Model
281
A.2  Characterization of Generic Momenta
284
A.3  DCA, CDMFT, and RDA
286
B  Hyperdiamond Lattice
291
C  Fourier-Transforming Imaginary-Time Green Functions
297
D  Linear Response to Electromagnetic Fields
305
D.1  Electromagnetic Interaction Hamiltonian and Choice of Gauge
305
D.2  Linear Response Theory
306
Bibliography
309
Index
321
List of Publications
331
Curriculum Vitae
333
Acknowledgements
335

Print version: http://dmft.org/Bluemer/Thesis/thesis_toc.en.shtml?print

Last changed: 12-Sep-13