Auswahlmenü
Links
nils-uni@bluemer.name
|
|
Prof. Dr. Nils Blümer |

|
Achtung: viele Informationen auf diesen Seiten sind veraltet! Für aktuelle Informationen über Nils Blümer siehe Webseiten der KU.
Computersimulationen in der Statistischen Physik
Vorlesung im Wintersemester 2007/2008
N. Blümer, P. Virnau
Stundenzahl: 3 V + 1 Ü
Zeit und Ort: Di 10 - 12 Uhr, Lorentzraum (Staudingerweg 7, 05-127), Do 10 - 12 Uhr, Seminarraum A (Staudingerweg 9, 01-219)
Zielgruppe: Studierende im Hauptstudium, Doktoranden
Univis-Eintrag: siehe Liste der Lehrveranstaltungen von N. Blümer im WS 2007/2008
Sprechstunde: jeweils nach der Vorlesung und nach Vereinbarung
Hinweise: Die Vorlesung wird in englischer
Sprache abgehalten.
Contents / lecture notes
- Lecture 0 (2007/10/23)
- Overview over contents of lecture
- Questionnaire
- Introductory beamer presentations
- Lecture 1 (2007/10/25) comp-sim-ws0708-v01.pdf
- Start Chapter I: Statistical analysis of time series
- Trace, transient, autocorrelation, probability distribution, moments, probability distributions of sums/averages, central limit theorem
- Unbiased estimators for mean and variance for data set without autocorrelation
- Lecture 2 (2007/10/30) comp-sim-ws0708-v02.pdf
- Improved estimator for variance for data set with autocorrelation
- Estimator for variance / standard deviation of average
- Practical data analysis using the programs gnuplot and stats
- Lecture 3 (2007/11/6+8) comp-sim-ws0708-v03.pdf
- Solutions for HW (statistical data analysis): comp-sim_hw2a.pdf
- Random number generators
- Lecture 4 (2007/11/8) awk_tutorial.pdf
- Lecture 5 (2007/11/13) awk_tutorial.pdf
- Lecture 6 (2007/11/15)
- Lecture 7 (2007/11/20)
- Lecture 8 (2007/11/22) comp-sim-ws0708-v08.pdf
- Ising model: history, hamiltonian, interpretation, and relation to more general spin models
- Excursion: statistical physics in the canonical ensemble
- Phase transitions, thermodynamic limit, and critical exponents
- Boundary conditions for finite systems
- Metropolis Monte Carlo for the Ising model
- Lecture 9 (2007/11/27) comp-sim-ws0708-v09.pdf
- Addendum: impossibility for importance-sampline MC to measure Z, F, or S
- Ising model: mean-field solution, solutions in d=1 and d=2
- Ising model: critical temperatures and critical exponents
- Finite-size scaling (FSS)
- Lecture 10 (2007/11/29) comp-sim-ws0708-v10.pdf
- Finite-size scaling, continued; Binder cumulant
- Solution of home work: 2d Ising model comp-sim_hw4.pdf
- Lecture 11 (2007/12/04)
- Lecture 12 (2007/12/06)
- Lecture 13 (2007/12/11) num-meth-ss07-v07.pdf
- Cluster Monte Carlo methods: Kasteleyn-Fortuin mapping, Swendson-Wang update, Wolff update
- Tutorial (2007/12/13)
- Q/A for homework (cluster MC Ising)
- Lecture 14 (2007/12/18)
- Lecture 15 (2007/12/20)
- Lecture 16 (2008/01/08)
- Lecture 17 (2008/01/10)
- Lecture 18 (2008/01/15) comp-sim-ws0708-v18.pdf
- Solutions for homework (PV)
- Chapter ?: Quantum Monte Carlo Simulations
- Classification of QMC methods
- Path integral Monte Carlo (PIMC)
- Lecture 19 (2008/01/17) comp-sim-ws0708-v19.pdf
- Path integral Monte Carlo (PIMC), continued
- Lecture 20 (2008/01/22) comp-sim-ws0708-v19.pdf
- Path integral Monte Carlo (PIMC), continued
- Lecture 21 (2008/01/24) comp-sim-ws0708-v21.pdf
- PIMC: Observables
- Quantum Heisenberg model
- World line quantum Monte Carlo simulations
- (2008/01/29) comp-sim-ws0708-v22.pdf
- WL-QMC: plaquette weights, Metropolis/heat bath rules, energy and other observables
- (2008/01/31) comp-sim-ws0708-v23.pdf
- (2008/02/05)
- Project presentations (2008/02/07)
Problem sets / Tutorials / Sample codes
- 2006/10/26 Variance estimator: bias for autocorrelated data?
- 2007/10/30 Data analysis: analyse the following sample data (solutions: comp-sim_hw2a.pdf)
- set 1 (10, 100, 1000, 10000 numbers)
- set 2 (10, 100, 1000, 10000 numbers)
- set 3 (10, 100, 1000, 10000 numbers)
- set 4 (10, 100, 1000, 10000 numbers)
- set 5 (10, 100, 1000, 10000 numbers)
- set 6 (10, 100, 1000, 10000 numbers)
- set 7 (10, 100, 1000, 10000 numbers)
- set 8 (10, 100, 1000, 10000 numbers)
- set 9 (10, 100, 1000, 10000 numbers)
- 2007/11/22 Monte Carlo simulation of 2D Ising model
(solutions: comp-sim_hw4.pdf)
- Write a Monte Carlo program for computing energy and magnetization of the 2 D square Ising model using single-spin flips (possibly using the template C program linked below).
- Compute E(T), |M(T)| in a useful temperature range for lattices with linear sizes between about 4 and 20-40
- Plot Binder's 4th order cumulant U4(T)=1-〈M4〉/(3〈M2〉2) and determine Tc
- Optional: determine specific heat and susceptibility at selected temperatures
- raw statistics data: directory, README
- 2007/12/11 Cluster algorithms for Monte Carlo simulation of 2D Ising model (solution: comp-sim_hw4.pdf, code: mc_Ising_2D_v06.c)
- Implement Wolff or Swendsen-Wang cluster update algorithm
- Compare autocorrelation times for energy and/or magnetization at the critical temperature with single-spin flip algorithm
- Plot "smart observables" (for Tc determination) near Tc and show improvements by cluster algorithm
- Discuss the melting of a magnet at T>Tc; example for freezing at T<Tc: MC_Ising_freeze.png
- Sample codes and tools
Ankndigung (aus kommentiertem Vorlesungsverzeichnis)
Inhalt der Vorlesung:
Diese Vorlesung behandelt die grundlegenden
Computersimulationsmethoden fr Systeme vieler Teilchen,
insbesondere in der Theorie der kondensierten Materie. Im Bereich
der Probleme der klassischen Physik sind die wesentlichen beiden
Simulationsmethoden die Molekulardynamik-Simulation und die
Monte-Carlo-Simulation. Die erste ist eine deterministische Methode,
die zweite eine stochastische. Fr beide gilt es, den theoretischen
Hintergrund zu verstehen, die Grundlagen ihrer numerischen Umsetzung
zu erarbeiten und die Tricks und Fallen in der praktischen Anwendung
kennenzulernen. Beide Methoden lassen sich zur numerischen L�ung
von Pfadintegralen auf quantenmechanische Vielteilchensysteme
verallgemeinern; gegen Ende der Vorlesung sollen diese
fortgeschrittenen Aspekte zur Sprache kommen und insbesondere die
Prinzipien der wichtigsten Quanten-Monte-Carlo-Algorithmen
vorgestellt werden.
Insbesondere in der zweiten H�fte der Vorlesung bercksichtigen wir
bei der Themenauswahl gerne Vorkenntnisse und besondere Interessen
der Teilnehmer. Eine aktive Mitarbeit wird bei den (flexibel
stattfindenden) �ungen erwartet; au�rdem sind Semesterprojekte
geplant, die von den Teilnehmern jeweils einzeln oder in kleinen
Gruppen durchgefhrt und am Ende in kurzen Vortr�en pr�entiert
werden.
Geforderte Vorkenntnisse: Klassische Mechanik, QM I, Statistische Thermodynamik
Literaturangaben
- M. P. Allen, D. J. Tildesley: Computer Simulation of
Liquids, Oxford Science Publications, 1997
- D. P. Landau, K. Binder: A Guide to Monte Carlo
Simulations in Statistical Physics, Cambridge University Press, 2005 (eBook, Hardback)
- D. Frenkel, B. Smit: Understanding Molecular Simulations, From Algorithms to Applications, Academic Press, San Diego, 2002
- D. Ceperley: Microscopic Simulations in Physics, RMP 71, S438 (1999)
- Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger: The AWK Programming Language, Addison-Wesley, 1988,
ISBN 0-201-07981-X.
- N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller und E. Teller: Equation of State Calculations by Fast Computing Machines, Journal of Chemical Physics 21, 1087 (1953).
- D. M. Ceperley: Path integrals in the theory of condensed helium, Rev. Mod. Phys. 67, 279 - 355 (1995).
Einordnung in Studien-- bzw. Prüfungsordnung:
Wahlpflichtvorlesung des Diplomstudiengangs, Vorlesung des Moduls
``Physik der Flssigkeiten und Festk�per'' des
Masterstudiengangs Computational Sciences
Schein: Vergabe aufgrund der Teilnahme an �ungen und Semesterarbeit
Bemerkungen: Eine thematisch anschlie�nde Vorlesung Moderne
numerische Methoden der Festk�perphysik ist im Sommersemester 2007
geplant. �er das Gebiet werden Diplom- und Doktorarbeiten vergeben.
|